
Composite Structure
&

Component Diagrams
Greg Guyles

csci5448
Prof. Anderson

November 16, 2012

Executive Summary:
 Composite Structure &
Component Diagrams

This presentation will describe two diagrams defined in the UML 2.0
specification and explain their strengths in featuring some of the important
aspects of Object-Oriented design. These diagrams are not better or worse
than other UML diagrams you may have worked with, but they offer specialized
views of a system that may better serve to express the concepts you are
attempting to model.

Composite Structure diagrams explore the internal organization of classes. It
can be used to explicitly describe a class as a composition of other classes.
The model can also show how the contained classes interact in the working
implementation.

Component diagrams allow modelers to provide a simplified, high-order view of
of a large system. Classifying groups of classes into components supports the
interchangeability and reuse of code. This diagram documents how these
components are composed and how they interact in a system.

"As there can be no Classification or Recognition
of objects without Perception of them; so there
can be no Perception of them without
Classification or Recognition."

-Herbert Spencer, The Principles of Psychology 1855

Themes
The diagrams covered in this presentation are
used to highlight two main themes in Object
Oriented Design:

Aggregation
The act or result of forming an object
configured from its component parts*

Classification
The act or result of removing certain
distinctions between objects, so that we
can see commonalities**

*Odell, 130
**Odell, 122

Composite Structure Diagrams and
Aggregation

● Composite Structure Diagrams allow the
users to "Peek Inside" an object to see
exactly what it is composed of.

● The internal actions of a class, including the
relationships of nested classes, can be
detailed.

● Objects are shown to be defined as a
composition of other classified objects.

Syntax of a Composite Structure Diagram

Composite Structure Diagrams show the internal parts of a class.

Parts are named: partName:partType[multiplicity]

Aggregated classes are parts of a class but parts are not necessarily
classes, a part is any element that is used to make up the containing class.

We are modeling a system for an online store. The client has told us that
customers may join a membership program which will provide them with
special offers and discounted shipping, so we have extended the customer
object to provide a member and standard option.

We have a class for Item which may be aggregated by the Order class,
which is composed by the Customer class which itself is composed by the
StoreManager class. We have a lot of objects that end up within other
objects.

Everything looks like it ends up inside StoreManager, so we'll create a
composite structure diagram to really see what it's made of.

Here we see StoreManager from its own perspective, instead of the
system as a whole. StoreManager directly contains two types of
objects (Customer and Item) as is indicated by the two composition
arrows on the class diagram.

What this diagram shows more explicitly is the inclusion of the
subtypes of Customer. Notice that the type of both of these parts is
Customer, as the store sees both as Customer objects.

We also see a connector which shows the relation between Item and
Order. Order is not directly contained within the StoreManager
class but we can show relations to parts nested within the objects it
aggregates.

What a Class Diagram can't show

We now have expanded our model to define the Item object as one
which is composed of a Description object and a Pricing object.
We then realize the implementation may be simplified if Description
can access the pricing information, so we draw a reference to the
Pricing object.

The problem is that this diagram is wrong. In a class diagram the
reference between Description and Pricing is ambiguous. This
does show that Description will have a reference to a Pricing
object but this diagram does not specify that it be the Pricing object
contained within the same Item object as itself.

Composite Structure Diagrams are
Contained

The reference between the Description and Pricing
objects is contained to objects that are composed by Item.

The specific implementations of an object's activity can be clearly
modeled.

References to External parts

We have seen examples of how Composite Structure diagrams are
great at describing aggregation, but your models will also need to
contain references to objects outside of the class you are modeling.

References to external objects are shown as a part with a dashed
rectangle. Even though they reference object is outside of the
class, the reference itself is within the modeled class and is an
important step in showing its implementation.

Component Diagrams and
Classification

● Components are made up of software
objects that have been classified to serve a
similar purpose.

● By classifying a group of classes as a
component the entire system becomes more
modular as components may be
interchanged and reused.

● This diagram documents the encapsulation
of the component and the means by which
the component interacts via interfaces.

“A component represents a modular part of a
system that encapsulates its contents and
whose manifestation is replaceable within its
environment.”

-The UML 2.0 specification

Syntax of a Component Diagram

Components are denoted by the use the special symbol, in the upper
right corner.

Components interact via interfaces, shown here using the "lollipop" notation.
This component provides interface I1 meaning it outputs information in the
form of I1, and requires interface I2, meaning it requires input in the form of
I2.

This specific diagram does not show which class contained within the
component require or provide interfaces I1 and I2, only that the component
as a whole enforces them.

High-Level System View

One main benefit of Component diagrams if to simplify the high-level view of the
system. Shown above is a much larger view of what is involved in our online
store. By using a component diagram we see the system as a group of nearly
independent subsystems that interact with each other in a specifically defined
way.

Each component is responsible for the action for which it is named and
interface(s) it provides. As long as those requirements are maintained changes
to one component will not percolate to other components.

Interfaces: The Component's Contract

The component interacts with the system by way of the interface. This is
what allows components to be interchanged and reused. The interface is
the contract by which the component must comply. On the previous slide
the ball and socket notation was used to show required and provided
interfaces. Here, two alternative styles are shown.

Interfaces shown using Realization and Dependency arrows

Interfaces show in the component body

It's what's on the inside that matters

The internal composition of components can also be modeled using component
diagrams, this is called a white-box view of the diagram because we can see
inside. Conversely, the examples on the previous slides are called black-box
views.

Ports are shown as squares bordering the component, these indicate how the
interfaces of the component are used internally. Objects implementing a
required interface are received via a port and objects implementing a provided
interface are shared via a port.

Delegation connectors

Delegation connectors are used to show which internal part receives or
provides shared objects. This is used to distinguish the interface requirements
of the internal class from that of the component as a whole.

Though these appear to be the same in this diagram, they may not necessarily
be so, a component may require a specialized object and pass it to an internal
part that only requires a more generalized object.

Delegation Connectors are one of the UML elements which are not consistently
represented. Arrows may or may not be used, they have been seen to either
point to the port, or in the direction data moves through the component. Lines of
delegation connectors have been shown to be dashed or solid. Using the
<<delegate>> title will clarify your intention.

Customer Service Component

Lets review the details of the CustomerService component shown earlier in
the high-level system view.

This component serves the customer service department of the store and as
such must be able to retrieve product information form the Storefront,
retrieve order information from the OrderProccessor and it must be able to
issue an orderOverride object to the OrderProcessor which can change
order details, give discounts, expedite processing, etc.

Customer Service Component

This is the white-box view of the CustomerService Component.

The required and provided objects all pass through the component via its ports
and the delegation connectors indicate which internal classes handle them. A
reference between the internal objects ServiceOrder and
ServiceInformation is also shown.

We can gain an abstract view of how the component processes information.
We see what type of information comes in, what classes are involved and how
they interact, and what output is shared.

Conclusion
Composite Structure diagrams are a useful way to examine the internal
composition and interactions of a class. They can show distinctions within the
class such as specialized classes which are all treated as the same general
class by the modeled class. The interactions shown in a Composite Structure
diagram are confined to the containing class which allows users to show
specifics that class diagrams cannot.

Component Diagrams provide a clear view of how components interact via
interfaces. They describe the requirements of the component and its content
and give an abstract view of how the component processes information.

These tools provide useful perspectives by which to model software. By looking
at a project from multiple points of view we gain a fuller understanding of its
implementation and abilities. UML models are often used when trying to convey
a point or concept about the system to another person who may or may not be
fluent in Computer Science terminology. Communicating with models increases
your vocabulary and will help you to convey points which may otherwise seem
too abstract to understand.

References
Arlow, Jim, and Ila Neustadt. UML 2 and the Unified Process: Practical Object-
Oriented Analysis and Design. 2nd ed.
Upper Saddle River, NJ: Addison-Wesley, 2005. Print.

Miles, Russ, and Kim Hamilton. Learning UML 2.0.
Sebastopol, CA: O'Reilly, 2006. Print.

Odell, James J. Advanced Object-Oriented Analysis and Design Using UML.
Cambridge: Cambridge UP, 1998. Print.

