

Agenda

● Educate the reader to the goals of Responsibility Driven Design
presented by Wirfs-Brock and McKean

● Discuss how the principles shape the Process of design:

– During project planning

– Creation of software objects and collaborations

● Discuss the Refinement principles that improve your product

– What Patterns are useful

– How to effectively increase the “ilities” of your design

Background

● Invented by Rebecca Wirfs-Brock while working at
Tektronix in 19902.

● She founded Wirfs-Brock Associates in 1997 with
Alan McKean2, and together co-authored the book
“Object Design: Roles, Responsibilities, and
Collaborations” in 2003.

● She has been a leader in the field of design and as
recently as 2008 was the keynote speaker at
OOPSLA 20082

What is it?

● Responsibility-Driven Design is a shift in focus that force the designer
to think about objects in their roles and responsibilities

● Places focus on each use case as a converstaion that takes into account
what each user wants to experience as the system output.

– This allows a designer to focus on requirements early, and not the
implementation of each object.

– The creation of objects and their collaboration is one that takes into account
their role rather than features.

– The process is iterative and meant to be refined over time

It’s a clarification process

➔ Find initial requirements, create system descriptions and system models

➔ Then generate more detailed descriptions and models of objects

➔ Generate detailed descriptions of object responsibilities and patterns of collaboration

● Remain fluid through the process as initial requirements and decisions will
change based on the time spent tackling the problem

● The process has built in stops and self-checks to “reexamine, adjust, and
align our work to a changing set of conditions.”1

Project Planning

● Start out conventionally with a concise statement of the project
● A statement of purpose

“We are going to create a mobile app to aid game hunters find duck migration patterns”

● Generate an overview

“Our app will contain storm patterns, wildlife reports and crowd sourcing data that allows hunters to
strategically place themselves in areas for successful duck hunting”

● Definition of Scope
● “Our project will only focus on duck migration in the continental United States using the latest

Android OS”

● Benefits
● “At the conclusion of our development this app provides users a strategic advantage over traditional

methods of duck hunting, provides more detailed analysis than the current app market, and gives a
source of advertisement income for our organization”

Project Planning (cont.)

Describe the following:
● How the software will be developed

● “...using the latest Android OS”

● The values that are important to the project and the people involved

– “advertisement income”
– “strategic advantage over traditional methods of duck hunting”

● The people and their roles, the processes, and the expected outcomes

● The expected deliverables

● The authors stress being able to move from discovery, reflection and
description of the project

– Add details, find the ambiguous, and resolve requirement conflicts

● This stage of planning should not be object-oriented
– “We will create a family of Weather interfaces for each data source”

Two Phases of Design

1. Initial Design
• Define action-oriented objects from the domain
• Assign these objects a set of responsibilities
• Organize this initial object set into logical collaborations

2. Comprehensive solutions
• Document design decisions
• Create class definitions and diagrams
• Utilize UML that documents abstractions and roles
• Define control patterns of the initial model

Stakeholder Considerations

● The authors stress that the designers take their
stakeholders in consideration during design

● Each participant has criterion against the final
product

➢ “The hunter in our app wants weather reports
updated at a high frequency”

➢ “The systems team will want to see low latency in
weather updates”

➢ “Management wants to keep licensing and
subscription costs for weather updates cheap”

Analysis Descriptions

● Spend time reviewing requirements developing
specifications early in the design process

● WARNING – Ill defined product specification could
lead to costly rework activity downstream

● Understand the environment of your software
application

– What are the external requirements on communication.

– What devices will the software interact with.

– What are the data persistence specifications

Uncommon Language

● How do you communicate specifications?
– User - “I want to see weather updates fast”

– System Admin - “We need to keep the load on our
weather aggregation server under 60%”

– Architect - “I want weather updates to occur within
200 ms”

– Manager - “We can't afford over 200k queries
against that external weather update service per
month”

– Weather APIs - JSON, POST/GET, OS service calls

Know your Actors

● Grouped into three roles: Users, Administrators,
External programs and devices

– Always external to a program

– Initiate, stimulate, and interact with the application

● Develop Use Cases to help understand your actors.
Descriptions should be of the form:

– Text narratives

– Scenarios consisting of numbered steps

– Conversations between the user and system.

Narrative Descriptions

● Write them in a meaningful way for the user.
● Use natural language and limit them to two

paragraphs.

“ A hunter has options on how the mobile app receives
weather updates in their area. By going to the options menu
the hunter can select the service providers and a frequency
in minutes that the weather is updated. Upon saving the
options the app incorporates those changes immediately”

Scenario Descriptions

● Specific steps that the user must take to fulfill the
use case

1. The user clicks the icon to go to “Options”

2. The app presents a screen consisting of weather
service check boxes and a combo box of update
frequency

3. The user selects save and the Options form sends the
form data to the weather controller for future
updates.

Conversations

● Describe interactions between the software and the
user as dialog

● Each conversation is made up of a set of
actions/inputs and related software responses

● Depending on the situation these conversations can
be highly detailed or written in a batch-oriented
manner.

● Can provide a higher level of detail than narratives or
scenarios accounting for decision points in the
software.

Conversations (cont.)
User Actions System Responsibilites

Show weather service providers Display the name of each provider and a
description of each service.

If connectivity to a weather service is
unavailable it shall be grayed out.

Optionally, choose an update frequency
different from default

Update display and set form to new value

Optionally, make a change in weather
service selection from default

Update display and set form to new
value(s).

Optionally, provide the option to select “no
weather service.”

Update display to gray out service
providers and frequency. Set form to new
value(s).

Indicate “Save” on form If app shall provide weather service but no
weather services are selected then alert
user.

Save form values and send to the weather
update control in the app.

Designer Considerations

● Describe the information that the implementors will
need to deliver a satisfactory software system.

– Include specification of user supplied information
and any default values

– Provide constraints against critical system actions

– Identify decision points in the software

– Formulate key algorithms

– Identify latency requirements

– Provide references to related specification
documentation

Conceptual Candidate Objects

● Wirfs-Brock and McKean stress concentrating on the “core” of a well
designed application:

– Key domain objects, concepts and processes

– Objects implementing complex algorithms

– Technical infrastructure

– Objects managing application tasks

– Custom user interface objects

● Expand on each object created and figure out if there are more candidate
objects that can be gleaned from them.

● Find gaps is responsibilities and create objects from them

“This app will need to display the most up-to-date map of the user's hunting
area. We need objects that display a map, update that map regularly, provide
layers of display, and allow for our specialized duck migration patterns to be
displayed”

Candidates, Responsibilities, and
Collaborators (CRC) Cards

● Whether candidate objects or roles, it is encouraged
that designers utilize index cards to represent CRC
cards
● Unlined side - Write an informal description of each

candidates purpose and role stereotypes

● Lined side - Record the responsibilities of the candidate
and information it must know to perform a set of specific
actions. Define collaborators (other objects) that this
candidate calls on.

CRC Card Example

DisplayLayer
Purpose: Transparent container for a set of datapoints and image objects to display

Patterns: Composite-component

Stereotypes: Structurer

DisplayLayer
Can control its transperency

Can be told to resize

Can be moved about the map using x and y pixel coordinates

Can be moved to different display layers

Object Stereotypes

How does your Object collaborate with the system?

● Information Holders - These objects typically do not collaborate but rather gather
information at creation or over the course of the program. Consider whether or
not the object holds facts of the system, How it is handled and persisted, and
where it comes from.

● Structurers- These objects gather information or objects and structure them for
use in the application. Consider where this information comes from and how
objects the structerer knows about are accessed. The authors warn that trying to
debate whether a structure is a composition or aggregation is futile as this
stereotype could not fit either role completely

● Service-Providers - Responsibilities that require a specialized skill or role.
Consider who has the information a service provider uses? Are services
configurable? Does the application need different versions of the same service?

Object Stereotypes (cont.)

● Controllers – Control and direct the actions of others. They fall under
two rules: To gather the information in order to make decisions and
to call on others to act. Consider who knows the information that
the controller needs? Who does it delegate responsibilities to? Who
is responsible for the results of any of the controllers actions?

● Coordinators – These objects facilitate action among objects by
passing along information. Consider the visibility of the
coordinator in an object neighborhood?

● Interfacers – Act as bridges, usually between the I/O of a system or
disjoint parts between two software entitites. They can be either
internal or external interfacers based on whether they are a
“storefront” to the activities of an internal system or exist to send
requests to service-providers for non-object oriented APIs.

Where Do Responsibilities Come
From?

● Identify system responsibilities from use cases
● Use cases only tell what actions should occur for a system and not how those actions will be

accomplished.

● Take time to digest each user story and glean responsibilities from each.

● Plug in gaps with lower level responsibilities
● Use cases do not explain error detection, timing, synchronization, aspects of control, or

coordination.

● Identify responsibilities as well as unresolved questions. Either work on what you know or
work on those that have significant impact on your design.

● Identify those responsibilities that arise between candidates relationships
● Use the natural language of the objects purpose when determining its responsibilities. In the

case of a structurer it is almost always “managing” or “maintaining” other objects.

● Follow “what if....then...and how?” chains of reasoning
● Don't focus on a specific task, but start with a high level goal.

“The system shall maintain 100% uptime when tasked 10% over recommended capacity.”

Assessing an Objects Responsibilities

● When assessing an objects responsibilities in its
object neighborhood the author's recommend the
following tests
● Does it stick to its purpose?
● Are its responsibilities clearly stated?
● Do its responsibilities match its role?
● Is it of value to other objects in its neighborhood?

Those other “ilities” : Reliability

● Wirfs-Brock and McKean stress that designers spend
time listing exceptions and errors, noting their handling
and recovery

● Work on the differences between “trusted” and
“untrusted” collaborations

● Identify which collaborations need to be reliable
● By their specific task
● Object neighborhood
● Interfaces with an external system
● Responses to exceptions of objects under its control

Those other “ilities” : Predictability

● Create software solutions in a consistent manner and don't vary
solutions to each problem/algorithm.

● Factors that contribute to a consistent, comprehensible design:
● Object are grouped in neighborhoods
● There are few lines of communication between neighborhoods.
● No one object knows, does, or controls too much
● Objects perform according to their designated role
● Apply the same solution to all variants when possible
● Don't unnecessarily repeat the same patterns of collaboration throughout

the design

Those other “ilities” : Flexibility

● Understand that not every object needs to be flexible and there are plenty of
tradeoffs to take into consideration.

● One must take a look at the real problem and establish a vision that is cost
effective and provides real benefits

● “Hot Spot Cards” handle what you don't know and identify where the
architecture could flex or vary. Each “Hot Spot Card” should be filled out as
early as the requirement gathering phase and is divided into three sections:
● Top section is the name,

● Middle summarizes the functionality that varies

● Bottom lists two specific examples of the variation

● Design Patterns that increase Flexibility
● Hide object interaction with a mediator

● Vary an objects behavior with a strategy pattern

– Use the Adapter pattern to make an object or system fit in the design

Developing The Solution

● Use your CRC cards to help find patterns
“With so many ways to access each weather service API we need to pick a design

pattern that simplifies our design”

● Pursue a solution that explores all options, chooses simplicity, and
works best for your application

“We should explore the use of the Strategy pattern versus the Adapter pattern for
each weather update API.”

“Let's choose a solution that treats all weather services like our most popular
service provider's API”

“The Strategy pattern in this case does more to complicate our design than make it
easier to do work.”

“Considering schedule and budget, let's not spend too much time making the
Adapter pattern implementation elegant for service provider X. Follow best
practice and get it done”

Conclusion

● A Responsibility-Driven Design provides a very
clear and Agile way to design large scale systems

● The use of this design pattern on small projects can
be debated on it's applicability

● One could “over engineer” the design and end up
with weak objects or weak collaborations3

● The focus on each object's roles and responsibilties
can be very beneficial for junior developers

References

1. Wirfs-Brock, Rebecca, and Alan McKean. Object Design:
Roles, Responsibilities, and Collaborations. Boston [Mass.:
Addison-Wesley, 2003. Print.

2. "Wirfs-Brock Associates Responsibility-Driven Design."
Wirfs-Brock Associates Responsibility-Driven Design.
Wirfs-Brock Associates, 2010. Web. 17 Nov. 2012. <
http://www.wirfs-brock.com/Design.html>.

3. "Responsibility-driven Design." Wikipedia. Wikimedia
Foundation, 16 Nov. 2012. Web. 17 Nov. 2012.
<http://en.wikipedia.org/wiki/Responsibility-
driven_design>.

http://www.wirfs-brock.com/Design.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

