~~ INTRODUCTION

Name: Srinivasa Nihant Gangadharabhatla
Program: M.S in Computer Science

Class: Object Oriented Analysis and Design(CSCI 5448)

Instructor: M.Kenneth Anderson

Graduate School: University of Colorado, Boulder

—

INDEX

INTRODUCTION

ABOUT .NET FRAMEWORKS & C#
SOME FACTS ON C#

PROPERTIES AND FEATURES OF C#
MISCELLANEOUS ABOUT C#
GRAPHICAL USER INTERFACE IN C#
SUMMARY

REFERENCES

TOPIC - DETAILS

Topic name: C# and .NET (# musical notation) I

”

Details: The presentation is about some features and
implementation details of C# and.NET Frameworks

/

=

e

NET Frameworks — Development

The .NET Framework (pronounced dot net) is a
software framework developed by Microsoft that
runs primarily on Microsoft Windows.

Although the development started in 1990s, the
initial release was in the year 2000.

The class library and the CLR(Common Language
Runtime) together constitute the .NET Framework.

The .NET Framework's Base Class Library(BCL)
provides user interface, data access, database
connectivity, cryptography, web application
development, numeric algorithms, and network
communications.

What is .NET?

Web Services

. . Building Blocks (e.g. for Services)

.NET Applications

Languages: Enterprise Servers

C#, Visual Basic, etc SQL Server BizTalk -

Runtime

.NET Framework

Operating System

From MSDN

- .NET Basic Understanding

. Given here, is the .NET e from Wikipedia
Framework Stack.

Task Parallel g

Parallel LINQ Library

&%

=
m
_l
-
o
o
53
%
=
o
-
-
N
o

\ o

.

.NET Design Features

Interoperability: Generally, the computer systems
commonly need interaction between newer and older
applications, the .NET Framework provides means to
access functionality implemented in newer and older
programs that execute outside the .NET environment.

The Common Language Runtime (CLR): CLR serves
as the execution engine of the .NET Framework.

All .NET programs execute under the supervision of the
CLR. It guarantees certain properties and behaviors in
the areas of memory management, security, and
exception handling.

Language Independence: The .NET Framework
introduces a Common Type System, or CTS. The CTS
specification defines all possible datatypes and
programming constructs supported by the CLR and how
they may or may not interact with each other
conforming to the Common Language Infrastructure

[T T\ °

. —

.NET Design Features

Base Class Library(BCL): The Base Class Library (BCL),
part of the Framework Class Library (FCL), is a library of
functionality available to all languages using the .NET
Framework. The BCL provides classes that encapsulate a
number of common functions, including file reading
and writing, graphic rendering, database interaction,
XML document manipulation, and many other. It
consists of classes, interfaces of reusable types that
integrates with CLR(Common Language Runtime).
Security:The design addresses some of the

vulnerabilities, such as buffer overflows. Moreover, .NET
provides a common security model for all applications.

NET also is provided by features such as portability,
simplified deplovment.

.

.NET Basics

Languages that comply with the CLI specification
of .NET, can be implemented on .NET Framework.

Following are common .NET Languages:
—C#
— Visual Basic
— A# (CLI Implementation of ADA)
— J# (CLI Implementation of JAVA)

— [ron Ruby/Iron Python(An open-source CLI
implementation)

— Jscript.NET (A CLI Implementation)

.

NET Languages

Languages that comply with the CLI specification
of .NET, can be implemented on .NET Framework.

Following are common .NET Languages:
—C# (Provided by Microsoft)
— Visual Basic (Provided by Microsoft)
— A# (CLI Implementation of ADA)

— J# (CLI Implementation of JAVA, Provided by
Microsoft)

— [ron Ruby/Iron Python(An open-source CLI
implementation)

— Jscript.NET (A CLI Implementation,Provided by
Microsoft)

m— /

// ' o
Some IDEs for .NET development

The below are some IDEs for development and
testing of .NET Frameworks are:

- Visual Basic

- Visual C++

- Visual C#

- Visual Web Developer

/

>

-

C# is a multi-paradigm language

C# is a multi-paradigm languge:
-Object Oriented
- Strongly typed
- Functional, declarative
- Generic
- Component Oriented

[t was developed by Microsoft within its .NET initiative and
later approved as a standard by ECMAand ISO .

C i is one of the programming languages designed for the
Common Language Infrastructure.

[t was focussed to be a simple, modern, general purpose Object
Oriented Programming language

/

>

Interesting things about C#

C# was released in the year 2000 by Microsoft

Anders Hejlsberg of Microsoft was the principle
developer.

Current version is 5.0, released on August 15, 2012.
C# resembles a lot of features of C++ and JAVA.

[t supports Graphical User Interface for personal
computers really easy.

Applications

Applications that can be run on C#
- Windows Form Application: It is Graphical

User Interface based

- Console Application: This application is
implemented on command prompt

-

A Simple Basic C# Program

using System;

[

2

3 namespace ConsoleApplicationl

¢ B

S class Program

6 0 |

T static void Main(string[] args)

H {

9 Console.WriteLine("Output for the basic program: Hello, this a simple C# Program");
10 }
11 }
.

» Output to be continued..

s

A Simple Basic C# Program output

=N X

B B L ———

Output for the hasic program: Hello, this a simple CH Program
Press any key to continue . . .

m »

> e ——
Keywords

Some of the common keywords used are:
- abstract - extern - object - try
- break - finally - override - this
- case - for - params - throw
- catch - foreach - private - typeof
- class - if - protected - using
- const - interface - public - virtual
- delegate - internal -return - void

-enum - namespace - static - while

Different TYPES

Different Types are:

Value Type: The variable name consists of the
value only

- int, double, float, enum

Reference Type: Here, the refernece or the pointer of
the actual address of the memory is stored

- Array, Delegate, Class, Interface and so on.

Comments

Comments can be assigned, so that the code is easy
to understand for single line comments and

delimited comments, documentation comments
- Syntax: /* Here text is ignored by compiler */
(OR)
// Comments is also valid
(OR)
/// Documentation Comments
Nested Comments are not allowed

Arrays

C# provides two types of arrays:

- One dimensional arrays can be thought of as a
single line or vectors of elements

- Mu!
each

ti-dimensional arrays are composed such that
position in the primary vector is itself an array,

called

| a sub-array

i

One-dimensional Arrays

using System;

-Inamespace ConsoleApplicationl

1
E class Program
{
= static void Main(string[] args)
{
int[] array = new int[4];
for(int i=0;i<4;i++)
array[i] = 1*6;
for (int i=0;i<4;i++)
Console.WritelLine("print the elements of my array{@}={1}", i, array[i]);
b
b
b
(|)

C:\Windows\system32\cmd.exe

elements of my arrayB=0
elements of my arrayl=6
elements of my array2=12

elements of my array3=18
key to continue . . . _

.

Multi-dimensional Arrays

Multi-dimensional arrays are of two types:
Rectangular Arrays
- Where all sub-arrays in a particular
dimension have same length
int x = myArr(2,3,1] //one set square brackets
Jagged arrays
- Each sub-array is an independent array
- can have sub-array of different lengths

jagArr[2][3][5] //three sets of square brackets

/ ; —

Explicit Initialilization ofArrays
For a one dimension-arrays we can set explicit initial
values by including an initializing list

int[] intArr = new int|5] { 10,25,30,40};

For initializing a rectangular array
int[,] intArr1 = new int[3,2] {

{10,1},{2,3},14,5}};

Properties

There are two types of methods: Properties are
members of the class which provide two simplified
methods setters and getters implementation of its
private fields

Implementation is coming up...

/ ®
Properties

[éﬁjThﬁ&p&ﬁCd '154
using System;|

n

econds

—lclass TimePeriocd
i
private dcouble seconds;
= public dcocuble TotalHours
i
get { return seconds / 36©©; 7}
set { seconds = wvalue * 36©©; 7}
¥
¥
—lclass Program
i
= static void Main()
i
TimePeriocod € = new TimePericd();
// the Hours property causes the "set’™ accessor to be called.
t.TotalHours = 24;
// The Hours property causes the "get’ accessor to be called.
System.Conscle.WriteLine("Calculate Time: " + t.TotalHours);
¥
¥

C:\Windows\system32\cmd.exe [W e S

Calculate Time: 24
Press any key to continue .

The properties can be set
automatic in C#

C# allows the feature to automatically implement the
getter and setter.

Hence, we can have a direct access to the data
members of the class.

The implementation is in the following slide..

Properties can be set automatic

% Routine
using System;

-lclass Routine
1
-] public string Name
1
get;
set;
¥
= static veoid Main(string[] args)
1
Routine r = new Routine();
r.Name = "Nihant's Presentation™;
System.Conscle.WritelLine(r.Name);
System.Console.ReadLine();
¥

¥
g C:WindowstsysteriZicmceve W o L o

Nihant’s Presentation ~

Classes and Structs

Classes are declared by using the class keyword
Explained as,

public class Employer{

// Fields, properties, methods and others

.}

Structs are defined by using the struct keyword
Explained as,

public struct Employee { // Fields, properties,
methods and so on

]

Nested Classes

Flclass Program

d
=] public class Programl
1
private int b;
// Other variables, methods| declarations and so on..
)
= static void Main(string[] args)
1
// method invocation and so on go here..
)
|}

Nested Classes are supported by C#, defaults to private

Polymorphism

Polymorphism
- Methods default to being non-virtual
- To be virtual it must be defined as virtual

- Example: public virtual int Sum(int a, int b);

- To override a virtual method, you use the override
keyword
- Example: public override int Sum(int a, int b);
- Methods not marked virtual are equivalent to Java final
methods

Note: Methods can be marked with new to break the
virtual chain

_/
__/
What is an Indexer?

An Indexer is a set of get and set accessors, similar to those of
properties.

Representation of an indexer:
string this [int index]
{

set

{

SetAccessorCode

get

{
GetAccessorCode

}
}

Inheritance

Inheritance is considered to be one of the three
pillars(apart from encapsulation and polymorphism)
of object oriented programming

Inheritance allows us to reuse, modify and extend the
characteristics(behavior) that is defined in other
classes.

Derived classes inherit behavior from base classes.

To override a method defined in the base class, the
keyword ‘override’ is used

Class Inheritance

We can use the existing class, called the based class, as
the basis for a new class called the derived class.

Members of the derived class consist of:
- members in its own class

.

- members of the base class

A derived class can never delete any of the members it
has inherited.

class OneClass : SomeClass {
... // colon is to directly inherit from the base
class

J

/

.

Arrngcina the inharited maemharc

-lclass SomeClassq{
public string Field = "base class Field";
= public void Method(string value){
Console.WriteLine("Hello, this is the base class --- Method: {@}", value);
¥
¥
-lclass OneClass:SomeClass{
public string Fieldl = "derived class Field"”;
= public void Methodl(string value){
Console.WriteLine("Hello, this is the derived class --- Methodl: {©}", value);
¥
¥
-lclass MainProgram
1
= static veid main(String[] args)
1
DneClass oc = new OneClass();

oc.Method(oc.Field);
oc.Methodl(oc.Fieldl);
oc.Method(oc.Fieldl);
oc.Methodl(oc.Field);

¥
¥
-
C\Windows\system32\cmd.exe l o | E] [l

this is the base class —— Method:base class Field
this is the derived class —— Methodl: derived class
this is the base class —— Method:base class Field

this is the derived class —— Methodl: derived class
Press any key to continue . . .

Access Modifiers

There are five categories:
- private
- public

- protected
- internal
- protected internal

The ‘partial’ keyword can be used to split up a class
definition in to multiple location. It may be helpful
when many developers are working on different parts
of the same class.

Delegates

A delegate can be thought of as an object that
contains an ordered list of methods with the same
signature and return type

- It contains a list of methods is called the invocation
list

- When a delegate is invoked, it calls each method in
its invocation list.

Delegates are used to implement GUI and event
handling in the .net framework. They are very similar
to pointers in C (and C++)

Lt e =
Delegates
Declaration of a variable of a delegate type:

MyDel delVar;

Delegate Type Variable

Delegate objects can be created by a new
operator. The operand of new operator consists:

- delegate type name

- a set of parenthesis containing the name of a
method to use as the first member in invocation
list

f////y//////, o
How does Delegation work?

-

class Simpleprogram

1
delegate int mydel(int a);
int add(int a) { return a * a; 7}
int mul(int a) { return a + a; 7}
static void Main(string[] args)
1
Simpleprogram sp = new Simpleprogram();
mydel d = sp.add;
System.Conscle.WritelLine(d(7));
d = sp.mul;
System.Console.WritelLine(d(6));
System.Conscle.Read();
¥
¥
- 4
C:\Windows\system32\cmd.exe ESE=x=

49

12

,,—é*”/////

e /

_ —
Lambda Expression in C#

The lambda operation is denoted by “=>". C#,
implementors (functions) that are targeted by a

delegate.
-Inamespace ConsoleApplication
{
using System;
- class Program
{

delegate int del(int a, int b, int c);
- static void Main(string[] args) {
del d=(a,b,c) = a*3b-c;
/|l => operation here is lambda
System.Console.WriteLine("output for the delegation lambda operation is: {@}", d(4,5,6));
System.Console.Read();

)

filer///C:/Users/nexus/documents/visual studio 2010/Projects/Program/Program/bin/Debug/Progr... [oS i

output for the delegation lambhda operation is: 11

.

Anonymous Methods

An anonymous method is declared in-line, at the
point of instantiating a delegate.

class Program

1

public static int Mulle(int x)

r

1
return x * 10;

¥

delegate int MainDel(int Param);

static void Main(string[] args)

d
MainDel del = Mulle;
Conscle.WritelLine("{@}", del(5));
Console.WriteLine("{@}", del(6));
Console.WriteLine("{@}", del(7));
Console.Read();

¥

2 N
i file:///C:/Users/nexus/AppData/Local/Temporary Projects/ConsoleApplication1/bin/Debug/Consol... ’ = | B liH

m »

Events

In fact, an event is a simpler delegate that is specialized for a
particular use.

e

Following are some important terms related'to events:
- Raising an event: Term for invoking or firing an event

- Publisher: A class or a struct that makes an event available
to other classesor structs for their use.

- Subscriber: A class or a struct that registers methods with a
publisher.

- Event handler: A method that is registered with an event. It
can be declared in the same class or struct as the event, or in a
different class or struct

Events

To declare an event is simple. It requires only a
delegate type and a name.

Syntax is:
class MyTimer{
public event EventHandler Elapsed;

Delegate type

We can also declare more than one event in a
declaration statement using a comma seperated
list

Interface

An interface is a reference type that represents a set
of function members , but does not implement them.

.

Although we define the method, its name,
parameters and a return type. There is no
implementation. Instead the implementation is
repalced by a semicolon

public interface ICompare

{

int CompareTo(object 0);

Let’s work on a Simple Interface

using System;

interface Simpl // Declare the interface

10

1
void PrintOut(string s);

¥

class MyClass : Simple // Declare the class

1
public void PrintOut(string s) // Implementation goes here
1

Conscle.WritelLine("Call the methods which I want to implement through: {@}", s);
¥
¥

class Program

1
static veid main(String[] args)
1
MyClass mc = new MyClass(); // Create instance
mc.PrintOut("the cobject assigned”); // Call the method

¥

)
(| mm CaWindows\system3Zicmd,exc W ocn L=l S

Call the methods which I want to implement through: the object assigned

e

.

Genefr CS

|
Generics allows us to refactor the code we write and
add an additional layer of abstraction to that, for
certain kinds of code, for data types that are not

hard-coded.

[t is particularly designed for cases in which there are
many(multiple) sections of code performing the same
instructions, but on different data types.

A placeholder for type <T> is used and when these
methods or classes are used, the user just simply has
to plug in the appropriate type.

The following slide has its implementation...

Jsing System;
4sing System.Collections.Generic;
namespace ConsoleApplicationl

{
/
~ class Stack<T>
1
T[] StackArray;
int StackPocinter = ©;
public wveoid Push(T x)
1
if (!IsStackFull)
StackArray[StackPeointer++] = x;
¥
public T pop(){
return (!IsStackEmpty)
? StackArray[--StackPointer] : StackArray[@];
¥
const int MaxStack = 10;
bool IsStackFull { get { return StackPecinter >= MaxStack; } 7}
boel IsStackEmpty { get { return StackPointer <= @; } 7}
public Stack()
1
StackArray = new T[MaxStack];
¥
public veoid Print()
1
for(int i=StackPointer-1; i>=0; i--)
Conscle.WriteLine("Value is: {@}", StackArray[i]);
¥
¥
class Program
1
static wveid Main()
1
Stack<int> StackInt = new Stack<int>();
Stack<string> StackString = new Stack<string>();
StackInt.Push(S)ﬂ
StackInt.Print();
StackString.Push(”"This is a presentation™);
StackString.Print();
) ¥ Bl C\Windows\system32\cmd.exe
¥ Ualue is

Ualue is a presentation

.

Object Initializers

Object initializers allow for initializing an object at
creation time without explicit constructors. It can
also be used with anonymous types

The following slide gives the demo for Object
Initializers concept

_
Demo: Object Initializers

namespace ConsoleApplication2
{
class Demo
{

public string Name
{ get; set;}
public int num
{ get; set; }

static void Main(string[] args)
{
Demo d = new Demo {Name="This is Object Oriented Analysis and Design"};
Demo d1 = new Demo { num = 2012 };
//object initializer

System.Console.WriteLine("Details of the presentation is: {@}",d.Name);
System.Console.WriteLine("Present year is:{@}",dl.num);

C:\Windows\system32\cmd.exe

Details of the presentation is: This is Object Oriented Analysis and Design

Present year is:2012

Enumerators

An array can produce, upon request, an object called
an enumerator.

An enumerator knows the order of the items.
Types of Enumerators:

- [IEnumerator/IEnumerable interfaces called the non
generic interface form.

- [IEnumerator<T>/IEnumerable<T> interfaces called
the generic interface form.

lterators

The following method declarations implements an
iterator

- The iterator returns a generic enumerator that
returns three items of type string

- The yield return statements declare that this is the
next item in the enumeration.

Let’s look at the two examples here...

lterators

IEnumerator<string> ColorsChose() //Version 1
{
yield return "black”; // yield return
yield return "gray"; // yield return
yield return "white"; // yield returd
}
IEnumerator<string> ColorsChose() //Version 2
{

b

string[] Colors = { "black”, "grey", "white"};
for(int 1=0; i< TheColors.Length;i++)
yield return Colors[i]; // yield return

Namespaces

Namespaces group a set of types together and give them
a name called namespace name

A namespace must be distinctive from other namespace
names and it should be descriptive of the contents.

Declaration:
namespace SimpleNamespace

{

TypeDeclarations

\/
P —

Example: Namespace

namespace spaceA

1
class ClassA
1
public void display()
1
System.Console.WritelLine("This is Class A");
¥
¥
¥
namespace spaceB
1
class Program
1
static void Main(string[] args)
-
L
spaceA.ClassA c©¢ = new spaceA.ClassA();
c.display();
Consocle.Read();

- «

C\Windows\system32\cmd.exe Lo | E S
This is Class

\ o

. Attriptute

An attribute is a special type of class, designed
specifically for storing information about the
program constructs. We can apply attributes to a
construct of a program’s source code, to declare
something about the construct.

.

Attributes are declared in square brackets above the
class name, method name and others.

We apply attributes to program constructs in the
source code.

The compiler takes the source code and produces
metadata from attributes, and places that metadata
in the assembly.

\/
Attributes

P

using System;
using System.Diagnostics;

namespace AttrObsoclete

{
class Program
d
[Obsclete("Use method SuperPrintOut™)] //Apply the attribute
static void PrintOut(string str)
d
Conscle.Writeline(str);
}
static void Main(string[] args)
d
PrintOut("Here starts the Main"); //Invoke the obsolete method
Console.Read();
}
}
}

Lo | B S

C:\Windows\system32\cmd.exe

Here starts the Main

/

.

Miscellaneous Features
String Handling: The C# predefined type string

represents the .NET class System.String. The most
important things to know about strings are the
following:

- strings are arrays of Unicode characters
- strings are immutable—they cannot be changed
Some useful Members of the string type:

Length, Concat, Contains, Format, Insert, Remove,
Replace, Substring, ToUpper, ToLower

— SR

Miscellaneous

Threading: It's possible to write multi-threaded
programs using the System.Threading class library.

Nullable Types: Nullable types allow us to create a
value type variable that can be marked as valid or
invalid so that we can make sure a variable is valid
before using it. Regular value types are called non-
nullable types

int? MylInt = 28

l

name of the nullabletype includes suffix

Miscellaneous

Documentation comments: The documentation
comments feature allows us to include
documentation of our program in the form of XML

elements

.

Visual Studio assists us in inserting the elements,
and will read them from the source file and copy
them to a separate XML file.

Some Documentaion code XML tags are:
<code> <example> <remarks> <summary>

<param> <value> <seealso>

Miscellaneuos

Exception Handling: Exceptions can be handled by
C#’s try, catch, throw and finally.

Collection classes: With the help of data structures
such as lists, hash tables and queues.

Conversions: It is a process of taking a value of one
type and using it as the equivalent value of another
type. Boxing, Unboxing, user-defined conversions
and reference conversions are some of them.

.

Miscellaneous details about C#

No COM Required

The .NET Framework frees the programmer from the COM legacy. As a C#
programmer, you don’t need to use COM, and therefore do not need any of
the following:

The IUnknown interface: In COM, all objects must implement

interface [lUnknown. In con- trast, all .NET objects derive from a single class
called object. Interface programming is still an important part of .NET, but it is no
longer the central theme.

Type libraries: In .NET, information about a program’s types is kept together with
the code in the program file, not in a separate type library the way it is in COM.

Reference counting: The programmer no longer has to keep track of references to
objects. In .NET, the GC keeps track of references and deletes objects when
appropriate.

HRESULT: The HRESULT data type used in COM to return runtime error codes is
not used in .NET. Instead, all runtime errors produce exceptions.

The registry: This system-wide database that holds information about the
operating sys- tem and application configurations is not used when
deploying .NET applications. This simplifies installation and removal of programs.

GUI: In CH#

The .NET framework provides a class library of
various graphical user interface tools such as frame,
text box, buttons, combo boxes and many others,
that C# can use to implement a GUI very easily and
fast.

It also equips these classes with events and event
handlers to perform action upon interacting with
these visual items by the user.

.

"

m— /

Windows Forms Application

Different Com;

- Form: To dis

bonents(For GUI) are:
play a form

- Label: To dis

play a label

- Radio button: To display a selectable button

- TextBox: To write/modify text
- Button: To click a button.

- Progress bars, checked list box and others.

~Windows Wﬁﬁh%ﬂﬁﬂs/
Components’ quick view

a5/ Forml oo |[-@][i&]‘

The Windows Form —
.
provided by the
components label,
checkboxes, combobox
and the button. .

button1

| checkBox1

| checkBox2

| checkBox3

Tosum up

The .NET Framework offers programmers
considerable improvements over previous Windows
programming environments

The CLR, the BCL and C# have all been designed to

be thoroughly object-oriented and well integrated
environment.

The CLR has a tool called the Garbage Collector(GC),
which automatically manages memory.

References and IDE used

Microsoft(MSDN)
Wikipedia-C#

g —

THANK YOU!

