GRASP Patterns

David Duncan
November 16, 2012




Introduction

GRASP (General Responsibility Assignment Software
Patterns) is an acronym created by Craig Larman to
encompass nine object-oriented design principles
related to creating responsibilities for classes

These principles can also be viewed as design
patterns and offer benefits similar to the classic
“Gang of Four” patterns

GRASP is an attempt to document what expert
designers probably know intuitively

All nine GRASP patterns will be presented and briefly
discussed




What is GRASP?

e GRASP = General Responsibility Assignment Software
Patterns (or Principles)

* A collection of general objected-oriented design
patterns related to assigning defining objects

e Originally described as a collection by Craig Larman
in Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design, 15t edition, in
1997.




Context (1 of 2)

* The third edition of Applying UML and Patterns is the
most current edition, published in 2005, and is by far
the source most drawn upon for this material

e Larman assumes the development of some type of
analysis artifacts prior to the use of GRASP

— Of particular note, a domain model is used

A domain model describes the subject domain without describing
the software implementation

* It may look similar to a UML class diagram, but there is a major
difference between domain objects and software objects




Context (2 of 2)

e Otherwise, assumptions are broad: primarily, the
practitioner is using some type of sensible and
iterative process

— Larman chooses the Unified Process because it is:
e [terative
* Flexible and open, integrates well with agile processes
e Popular with OOAD projects




Responsibility-Driven Design

e GRASP patterns are used to assign responsibility to
objects

e As such, their use results in a Responsibility-Driven
Design (RDD) for Object Orientation (OO)
— Contrast to (the more traditional) Data-Driven Design

e With this point of view, assigning responsibilities to
objects is a large part of basic object design




Why GRASP?

* Traditionally in Object-Oriented Programming (OOP), object

design is glossed over
— E.g., think of nouns and convert to objects; think of verbs and convert
to methods

— Or even: After requirements analysis and creation of a domain model,
just create objects and their methods to fulfill requirements

e (Oh. ...0Ok. Poor inexperienced OO developers.)
e UMLis just a language—it expresses an OO design but for the
most part does not provide guidance
e Per Larman, GRASP helps one “understand essential object
design and apply reasoning in a methodical, rational,
explainable way.”




Design Patterns

Software design patterns were launched as a
concept in 1987 by Kent Beck and Ward
Cunningham, based upon Christopher Alexander’s
application in (building) architecture

Core definition: a named description of a problem
and a corresponding reusable solution

ldeally, the pattern advises on when it should be
used and the typical trade-offs

The most famous design patterns are the 23
described by the “Gang of Four” (GoF) book in 1993




Design Pattern Advantages

 Both the GoF patterns and GRASP patterns have
notable benefits:

— Simplifying: provides a named, generally understood
building block

e Facilitates communication
e Aids thinking about the design

— Accelerates learning to not have to develop concepts from
scratch




GRASP vs. GoF Patterns

e GRASP patterns are in a way even more fundamental
than the GoF patterns

— GRASP patterns are equally well referred to as principles,
while the GoF patterns are rarely referred to as such

 While the naming of both types of patterns is
important, it’s less important for the GRASP patterns

— The concepts are truly what are important




About Responsibilities

Two types of responsibilities for objects:
— Doing

— Knowing

Knowing responsibilities are often easily inspired by software
domain objects

— E.g., domain class for a Sale has a time attribute - Sale class in 0O
design knows its time as well

— Result of meeting the domain model aim to have a Low
Representational Gap (LRG)

Doing responsibilities often come from early modeling

— E.g., each message in a UML interaction diagram is suggestive of
something that must be done




GRASP patterns

e There are nine GRASP patterns, likely some already
recognizable and some not:
— Creator
— Information Expert (or just Expert)
— Low Coupling
— Controller
— High Cohesion
— Polymorphism
— Pure Fabrication
— Indirection
— Protected Variations

e (NOTE: The problem and solution statements that follow are
almost verbatim from Larman, except for a very few minor
attempts at adding clarity.)




Creator

 Problem: Who should be responsible for creating a new
instance of some class?

— If done poorly, this choice can affect coupling, clarity, encapsulation,
and reusability.

e Solution: Assign class B the responsibility to create an
instance of class A if one of the below is true (the more the
better). If more than one option applies, usually prefer a class
B which aggregates or contains A.

— B contains or is composed of A.
— Brecords A.
— B closely uses A.

— B has the initializing data for A that will be passed to A when it is
created.

 Thus B is an Expert with respect to creating A.




Creator Discussion

* This pattern generally avoids adding coupling to a
design (which is bad—see GRASP pattern #3).

* When creation is a complex process or varies

depending upon an input, often you’ll want to create
using a different class implementing the GoF pattern
Concrete Factory or Abstract Factory.




Information Expert

 Problem: What is a general principle of assigning
responsibilities to objects?

e Solution: Assign a responsibility to the information
expert—the class that has the information necessary

to fulfill the responsibility.




Information Expert Discussion

e This is general principle and probably the most used
of any GRASP pattern.

* This generally is key to loose coupling and high
cohesion, but not always so.
— Imagine a case where it is better to hand off data in order
to preserve a large functional divide and aid cohesiveness.
e We are implicitly talking about info held by a
software object, but if there are not relevant
software classes, try the domain model.




Low Coupling

 Problem: How to support low dependency, low
change impact, and increased reuse?

e Solution: Assign a responsibility so that coupling
remains low. Use this principle to evaluate
alternatives.

— Coupling refers to any type of tangible dependency
between elements—classes, subsystems, systems, etc.—
and is referenced by its degree:

e Weak (low) is good.
e Strong (high) is bad.




Low Coupling Discussion

Higher coupling can lead to:
— More difficulty in understanding
— Changes propagating excessively
— More obstacles to code reuse
Lower coupling often goes hand-in-hand with higher cohesion (good—see
GRASP pattern #5).
Consider this principle with every design decision.
Note that too little coupling would indicate something is wrong with the
design, likely including low cohesion
— In RDD (and really O0), the aim is to have a broad network of focused objects
using communication toward fulfilling the requirements in an organized
fashion.
The more unstable the class coupled to, the more concerning the
connection

— E.g., consider a language’s standard library vs. a class a coworker just defined
a couple days ago.




Controller

 Problem: What first object beyond the Ul layer
receives and coordinates (“controls”) a system
operation?

e Solution: Assign the responsibility to one of the

following types of classes:

— Facade Controller: represents the overall “system”, a “root
object”, or a device that the software is running

— Use case or session controller: represents a use case
scenario within which a system event occurs (e.g., “add an

address book entry”)

 The class would typically be named <UseCaseName>Handler,
<UseCaseName>Coordinator, or <UseCaseName>Session




Controller Discussion

e A controller attempts to coordinate the work
without doing too much of it itself (again, guided by
the degrees of coupling and cohesion)

— The keyword is delegation.
 An easy example of this is that Ul objects shouldn’t

perform business logic; there are other classes for
that.

e The controller in the Model-View-Controller (MVC)
architecture is effectively the same thing.

— This, or its variation Model-View-Presenter, is frequently
used in web applications




High Cohesion

 Problem: How to keep objects focused,
understandable, and manageable, and as a side

effect, support Low Coupling?
e Solution: Assign a responsibility so that cohesion

remains high.

Use this to evaluate alternatives.

— Cohesion refers to the functional cohesion between
elements (classes, subsystems, systems, etc.), which is a
measure of how strongly focused the responsibilities of an

element are.




High Cohesion Discussion

e Very similar to Low Coupling
— Often related (but not always)
— Should be considered in every design decision.

 Lower cohesion almost always means:

— An element more difficult to understand, maintain, or
reuse

— An element more likely to be affected by change

 Low cohesion suggests that more delegation should
be used.




Polymorphism

 Problem: How to handle alternatives based on type?
How to create pluggable software components?

e Solution: When related alternatives or behaviors
vary by type (class), assign responsibilities for the
behavior—using polymorphic operations—to the
types for which the behavior varies.

— Polymorphic operations are those that operate on
differing classes

— Don’t test for the type of the object and use conditional
logic to perform varying statements based on type.




Polymorphism

 With respect to implementation, this usually means
the use of a super (parent) class or interface

— Coding to an interface is generally preferred and avoids
committing to a particular class hierarchy.

 Code like the following should raise a red flag!
Switch creatureType
Case batType: print “Screech!”
Case cowType: print ‘“Moooooo...”
Case humanType: print “Let’s watch TV!”

[---1
* Also see GRASP pattern #8, Protected Variations.




Pure Fabrication

 Problem: What object should have the responsibility,
when you do not want to violate High Cohesion and
Low Coupling, or other goals, but solutions offered
by Expert (for example) are not appropriate?

e Solution: Assign a highly cohesive set of
responsibilities to an artificial or convenience class
that does not represent a problem domain
concept—something made up, to support high
cohesion, low coupling, and reuse.




Pure Fabrication Discussion

* |n other words, getting class concepts from a good domain
model or real-life objects won’t always work out well!

 An example of a possible pure fabrication class:
PersistentStorage
— May very well not be in the domain model
— May very well not map to a real-life object
— But it might be the answer to achieve our goals of low coupling / high
cohesion while still having a clear responsibility
e Observe that all of the GoF design patterns are pure
fabrications (often of multiple classes)




Indirection

 Problem: Where to assign a responsibility, to avoid
direct coupling between two (or more) things? How
to decouple objects so that low coupling is
supported and reuse potential remains higher?

e Solution: Assign the responsibility to an intermediate
object to mediate between other components or
services so that they are not directly coupled.

— The intermediary creates the indirection.




Indirection Discussion

e Often an indirection intermediary is also a pure
fabrication.

— The PersistentStorage example could very well be an
indirection between a Sale class and the database.

 The GoF patterns Adapter, Bridge, Facade, Observer,
and Mediator all accomplish this.

* The main benefit is lower coupling.




Protected Variations

 Problem: How to design elements (objects,
subsystems, and systems) so that the variations or
instability in these elements does not have an
undesirable impact on other elements?

e Solution: Identify points of predicted variation or
instability; assign responsibilities to create a stable
interface around them.




Protected Variations Discussion

In the solution “interface” is meant in the general sense; but you’ll often
want to use an interface programming construct (in Java, for example) to
implement the solution!
Benefits:

— Easy to extend functionality at PV points

— Lower coupling

— Implementations can be updated without affecting clients

— Reduces impact of change

Very similar to the open-closed principle or the concept of information
hiding (not the same as data hiding)

In Larman’s first edition, was the Law of Demeter, but Protected
Variations is a more generalized expression

“Novice developers tend toward brittle designs, intermediate developers
tend toward overly fancy and flexible, generalized ones (in ways that
never get used). Expert designers choose with insight.”




For More Information...

e For more on GRASP, it’s hard to beat the depth of Larman’s
text:

— Larman, Craig. Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development. Third
edition, Prentice Hall, 2005.

e |tis well written and there is also substantial material on UML, agile, GoF
design patterns, a project-level perspective, and more.

 |f GRASP doesn’t strike a chord, there are alternative
approaches to the general question of “How do | create an
OO design using objects?” For example:

— Wirfs-Brock, Rebecca and McKean, Alan. Object Design: Roles,

Responsibilities, and Collaborations. Addison-Wesley Professional,
2002.

— Evans, Eric. Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley Professional, 2003.




Conclusion

e GRASP provides a map of considerations to provide
strong guidance for an OO designer

e But at the same time, GRASP still leaves a lot of room
to the designer and creating a good design is still an
art!

 Taking a look at GRASP—and really Applying UML
and Patterns—is a good bet for OO designers who
know the basics of OOP but are still inexperienced




