

AGENDA

0 |ntroduction of C #

0 History of C#

0 Dcsign (Hoals

0 Whg C#’? : Peatures

o(#6& Objcct~Oricntccl APProach
0 Adva ntages of C#

0 APPlications of C#

0 |ntroduction to .Net Framework

0 History of Net

0 Dcsign [Features

0 Net Architecture

0 Neté& Objcc’c Oriented APProach
0 APP]ication of NET: GUI

0 Wrapping UP

0 Rc{:crcnccs

INTRODUCTION TO C#

C#is a multi—-Paradigm Programming languagc which is based on objcc’e—
oriented and comPonent~orientcd Programming disciplincs.

¢ Provides a framework for free intermixing constructs from different

Paradigms.

[t uses the “best tool for thcjob” since no one Parac]igm solves all Problems in
the most efficient way.

BRIEF HISTORY

0 (# was dcvelopccl bg Microsoft with Anders chlsbcrg as the PrinciPal
clcsigncr and lead architect, within its N T initiative and it made its
appearance in 2000.

0 Anders chlsberg and his team wanted to build a new Programming language
that would helP to write class libraries in a NET framework. [e claimed that
(# was much closerto (C++inits design.

0 T he name "C sharP" was insPirec] bﬂ musical notation where a sharp indicates
that the written note should be made a semitone higher in Pitch.

0 I versince its inception, C# has controvcrsia"y been stated as an imitation of
Java. However, througlw the course of time, both Java and (C# have exhibited
distinct features which support strong object«-orientec] c]esign Principles.

DESIGN GOALS

(_# was intended to be a simPlc, modern, object-—oricntccl languagc.

The languagc and imPlemcntation had to Provic]e support for software
engineering Pr*inciplcs like strong type chec‘(ing, array bounds checking and

automatic garbage collection.

—

—116 language was intcnc]cc.l {:or clevelopment o{: so&ware comPonents
suitable for cleplogment in distributed environments.

Source code Portabilitg was important for programmers who were familiar

with C and C++.

SUPPort for internalization to adapt the software to different languages.

WHY C# ? : FEATURES

o C#is the first “componcnt—-oricntcd” languagc inthe C/C++ gami]g.

0 The big idea of (#is that cvergthing is an objcct.

o (#is a Programmin langua{_gc that clircctly reflects the undcrl?ing (Common Languagc
Infrastructure (C)ﬁ\/\ost ot its intrinsic types corrcsPoncl to value-types implcmcntccl Y
the ramework.

0 THPC-sa]Ccty: (C# is more type safe than (C++. Tch sa{:ctg is the extent to which

a Programming anguage cliscouragcs or Prcvcnts tgpc errors.
o C#, like C++, but unlike Java, suPPorts oPcrator ovcr]oacling.

o Managcd memory is automatica“g garbagc collected. C]arbagc collection addresses the
roblem of memory leaks bg {:rccing the programmer of rcsPonsibilitg for rclcasing memory
fhat is No longer needed.

o (C# Providcs pro erties as syntactic sugar for a common pattern in which a pair of methods,
accessor (gcttcr)pand mutator (scttcr) cncapsuiatc oPcrations on a singlc attribute of a

Ciass.

WHY C# ? : FEATURES ...cont.

0 |n addition to the trg...catch construct to handle exceptions, C# has
a trg...ﬁna”g construct to guarantee execution of the code in
the {:inaug block, whether an excePtion occurs or not.

0 (nlike Java, C# does not have checked excePtions. This has been a

conscious decision based on the issues of scalaBi]itg and versionabilitg.

0 Multiple inheritance is not suPPortecJ, although a class can imPlement any
number of interfaces. | his was a c]esign decision to avoid coml:)lication and
simP]i{g architectural requirements throughout CL]

0 C# suPPorl:s a strict Boo]ean data tgpe, bool. .Statements that take
conditions, such as while and if, rectxire an exPression of a type that

implements the true operator, such as the boolean type.

C# & OBJECT ORIENTED
APPROACH

5tructs & Classcs

]nterf:accs

Delegates
Switch Statement: [all Through

For Each: Contro] f:low

Virtual Methods

Boxing & Unboxing
Common Tgpc Sgstem

(senerics

Reflection

(I) STRUCTS & CLASSES IN C#

0 ln C# structs are very different from classes. Structs in (# are clesignec] to
encapsulate lightwei ht objects. Theg are value types (not reference tgpcs), SO
theg‘rc Passecl 53 vaﬁe.

7 They are sca]cd, which means thcg cannot be derived from or have any base class.

0 (Classes in (C# are different from classes in (C++ in the go"owing ways:

i. T hereis no access modifier on the name of the base class and inheritance is alwags

Public.

i. A class can onlg be derived from one base class. |f no base class is cxP]icitlg
5Pcci{:iccl, then the class will automatica"g be derived from Sgstcm.o}ijcct.

iil. ln C++, the onlg tchs of class members are variablcs, Functions, constructors,
destructors and oPcrator o\/crloacls, C# also Pcrmits clclcgatcs, events and
Propcrtics.

iv. | he access modifiers Public, Privatc and Protcctccl have the same meaning as
in (C++ but there are two additional access modifiers available: (@) |nternal (b)
Protected internal

(II) INTERFACES

(# does not support Multiplc |nheritance
[However a class can imPlcmcnt number of interfaces

|t contains methods, Properties, indexers, and events

interface DataPind

\{/oicl Bind(]Datadinder bind);

}Class I ditPox: Control, DataBind

\{/oic] DataPind.Pind(|]DataBinder bind) {...}
}

(III) DELEGATES

Ay c!clcgatc is similar to a function Pointer in(_/(#.

USing a clelcgate allows a programmer to cncapsulate a
reference to a method inside a delegate object, which can then
be Passed to code.

Declaring a clelegatc:

Public dc]egate void BookDelegate(Book book),
]nstantiating a delegatc:

book.FaPcrbackbooks(ncw BookDelcgate(T itle));
Ca“ing a clelegatc:

Processbook(b) 5

(IV)SWITCH STATEMENT:
FALL THROUGH

ln C#a switch statement may not nfall through" to the next statement if it does any work.
To accomplish this, you need to use an cxPlicit goto statement:

switch 0

{

case 4—:Ca"fzuncOncO;
goto case 5;

case 5:
Ca"Somcf:uncO;

}

H: the case statement does not work (has no code within it) then you can fall :

switch (§)

{
case4:// fall through
case 5:
CallSome[Funcl);

}

(V)FOR EACH CONTROL
FLOW

Ncw control ﬂow statement- foreach:

C# Providcs an additional flow control statement, for each. For each loops
across all items in array or collection without requiring exF]icit specification of
the indices.

Sgntax:
Forcach(double someﬁ_lement in MgArrag)

{
Consolc.WriteLine{someﬁ_lcmcnt);
}

(VI)VIRTUAL METHODS

In (_# one can choose to override a virtual function from base class. Derived
method can Participate in Po]gmorphism only if it uses the kegworc! override before
it.

In C ++, if provided the same syntax method in derived class as base
class virtual method, it will be automaticaug be overridden.

In C# we have abstract methods and in C++ pure virtual methods. Both may not be
exactlg same, but are cquivalcnt (as pure virtual can have function boclg)

EXAMFLE.:

class Pasef
Public virtual string Virtua]McthodO

{ return "base virtual®; }

}
class Derived : Pase{

Public override string VirtualMethod()

{ return "Derived overriden®; }

}

(VIDBOXING AND UNBOXING

0 Boxﬁ?gis the oPcration of converting a valuc-—tgpe objcct into a value of a
corresPonding reference type.

% Boxing in(C#is imPlicit.

Z (/lnﬁoxin‘gis the operation of converting a value of a reference type
(Prcviouslg boxed) into a value of a value type.

% Unboxing in (C# requires an exPlicit type cast. A boxed ol?ject of tgPeT
jto a T(or a nullable T)

can Oﬂlg bC unboxe

o EXAMFLE -
int box__yar =42. ~/ Va/ue type.

obj ect bar = box__”va r, ./ foo is boxed to bar.
int box__varz = (int)bar; Un[aoxcc/ back to value type.

(VII) COMMON TYPE SYSTEM

(C# has a unified type system. T his unified type system is called Common
Type Oystem (CT 9).

A unified type system implies that all types, including Primitives such as
integers, are subclasses of the Sgstem.Ol?ject class. For examPle, every tHPC

inherits a Tostringo method.

C

I. Va]uc tgPes
) Re{:erence ty pes

S separates data types into two categories:

(VII)VALUE TYPE V/S
REFERENCE TYPE

VALUE TYFPLE:

|nstances of value types do not have referential identitg nor referential

comParison semantics i.e. equalitg and inequalitg comPar‘isons for value tgjcs
compare the actual data values within the instances, unless the correspon ing

oPerators are over]oac]ec].

Valuc tg;es are derived from Sgstem.Va]ueTgpe, alwags have a default

value, and can alwags be created and coPiec].

Theg cannot derive from each other (but can imPlemcn’c interfaces) and
cannot have an explicit default (Parameterless) constructor.

(VIII) VALUE TYPE VS
REFERENCE TYPE ...cont.

REFERENGE N

Reference types have the notion of referential iclentitg - each instance of a
reference tgpe is inherentlg distinct from every other instance, even if the
data within both instances is the same.

[t is not alwags Possible to create an instance of a reference type, nor to
copy an existing instance, or Perf:orm a value coml:)arison on two existing
instances.

SPccﬂ:ic reference types can Providc services bg exPosing a Public
constructor or imP ementing a corrcsponc]ing interface (such

as lCloneaHe orlComParable). Examplcs»: Sgstcm.String, .Systcm.Arrag

(IX) GENERICS

0 (Generics use type parameters, which make it Possiblc to dcsign classes and methods that do not
spcchcy the type used until the class or method is instantiated.

0 Thc main advantagc is that one can use generic type parameters to create classes and methods
that can be used without incurring the cost of runtime casts or boxing oPcrations.

o EXAMFLE:
Public class Generic] ist<T>
{
void Add(T input) {]
}
class T est(Generic| ist

{
Privatc class E_xamplcClass {}

static void Main() {
o Declare a list of type int.
(Generic| ist<int> list1 = new (Generic] ist<int>();
/' Declare a list of type string.
GcncricLis’Kstring} list2 = new Gcncric]_ist<5tring>o;
}
}

(X) REFLECTION

0 Reflection is useful in the Fo"owing situations:

7 thn you need to access attributes in your Program’s metadata. Sce the
toPic Acccssing Attributes \With Reflection.

0 [or examining and instantiating types inan assemblg.

0 For building new types at runtime. (Jse classes
in Sgstem.Reﬂection.Emit.

0 [For Per[:orming late binding, accessing methods on types created at run
time.

o EXAMFLE-
S/ USing GetTgPe to obtain type information:
inti1=42;
Sgstem.Typc type = i.GetTyPeO;
Sgstem.Conscle.WriteLine{tch);

ADVANTAGES OF C#

lt allows clcsign time and run time attributes to be included.

It allows intcgratcd documentation using XM .

No header {:ilcs, lDL etc. are rcquircc].

It can be embedded into web pages.

Garbagc collection ensures no memory Icakagc and stray Poin’ccrs.

Due to cxccPtions, error handling is wc"~Planne& and not done as an
amctcrthought

A"ows Provision for intcropcrabilitg.

APPLICATIONS OF C#

The three main types of aPPlication that can be written in (C# are:

Winforms - Windows like Forms.

(Console - (Command line InPut and OutPut.

Web Sites : Web sites need ”5 {(Microsoft's web server) and
ASFNET.

INTRODUCTION TO .NET
FRAMEWORK

o framework is a software framework Primarilg for Microsoft Windows. |t
includes a large librarg & Provides language interoperabilitg across several
Programming languages.

0 Frograms written for the N T Framework execute in a software environment,
as oPPosec] to a hardware one for most other programs. (_ommon examPles of

such programs include Visual Studio, T eam E_xplorer UI, Sharp Develol:) .

0 Frogrammcrs combine their own source code with the NI T [Framework and
other libraries. The NET Framework is intended to be used by most new
applications created for the Windows Platf:orm.

HISTORY OF .NET

o N T was dcvcloped by Microsoft in the mid 1990s, origina“g under the

name of ‘Next (Generation Windows Services'.

0 NET 1.1 was the first version to be included as a part of the Windows
05 I’c Providec] built-in suPPort for ASF NET, ODE)C & Oracle

databases. It Providccl a l‘ligher level of trust bg a"owing the user to enable

(Code Access Securitg in ASPF.NET.

o Currcntlg, Windows 8 suPPorts version 4.5 of NE_ which suPPorts
Provision for Metro Style APPS’

DESIGN FEATURES

0 lntcropcrabilitg: NET Framework Proviclcs means to access {:unctiona]itg
implcmcntcd in newer and older rograms that execute outside the N T
environment. Access to (COM components is provided in the
Sgstem.Runtime.lntcroPSCrvices and Sgstcm. nterPriseServices
namespaces of the framework.

0 (Common Language Runtime engine: C LR serves as the execution engine of
the NI T Framework. AU NET programs execute under the suPcrvision
of the (] R, guaranteeing certain Properties and behaviors in the areas of
memory management, security, and cxccl:)tion hanc”ing.

% Language lnc]cpenc]c:nce: NET]:ramework introduces (Common THPC
Sgstem which define all Possiblc data types & Programming constructs
su Ported 139 CILR & ruled for their interaction as per CL] speci{:ication.
T his allows the exchange of types & objcct instances between libraries &
their applications written using any con{:orming N T language.

DESIGN FEATURES ...cont.

] BCL It is a librarg of Functionalitg which is available to all languagcs using

the ramework. |t consists of classes, interfaces or reusable types that

integrate with C] R.

0 Fortabilitg: The framework allows Platform—-agnostic & cross~PlatForm

implementations for other OS. The avai]abilitg of sPecifications for the
CFE_I, & (C# make it Possible for third Parties to create comPatible

implcmentations of the framework & it'’s languages on other Plat[:orms.

.NET FRAMEWORK
ARCHITECTURE

Windows Forms Web Forms
Console

Applications

CONTROLS CONTROLS
DRAWTNG | SERVICES
e s el

INDOWS APPLICATIONS WEB APPLICATIONS

ADO .NET REFLECTION REMOTING
DIAGNOSTIC THREADING

Cfommon Language RUntime
Garbage Code
Collector Manager

NET ARCHITECTURE DESIGN

CLR:

Thc software environment in which programs for NE_T framework run is known as the ‘Common
Languagc Runtime’. [t is Microsoft’s im lementation of a ‘(_ommon Languagc]nFrastructurc’.]ts
purpose is to Providc a languagc~ncutra PlatForm for aPPlication &cvclopmcnt & execution.

Thc CU is rcsponsiblc for cxccption hancﬂing, garbagc co”cction, 5ccuritg & intcroPcrability.

The CJl_codeis housedin (|] assemblies. T he asscmblg consists of many files, one of which must

contain metadata for asscmbly.

VM:

An aPPlication VM Providcs services such as security, memory management & cxccPtion hancﬂing.
Tl‘nc sccurit3 mechanism suPPorts 2 main features.

Code Access 5ccurit3: |t is based on Proof thatis related to a sPcciFic asscmbly. |t uses the same to
determine Pcrmissions grantcd to the code.

Validation & Verification: Validation determines whether the code satisfies spcci{:icd requirements
and Verification determines whether the conditions imPoscd are satisfied or not.

.NET ARCHITECTURE
DESIGN ...cont.

C}ass Librarg:

T he class librarg &CLR csscntia"g constitute the ‘N Framework. T he

]:ramcwork’s base class librarg Providcs Ul, data access, database conncctivitg,
algorithms, network communications & web aPPlication c]cvc]opmcnt

In spite of the varied Functionalitg, the BCL includes a small subset of the entire
class librarg & is the core set of classes that serve as the basic AF] of the (] R.

The Framework Class |_ibrary is a superset of BCL & refers to the entire class
library which includes libraries for ADO.NE T, ASFNET, Windows [Forms,

etc.

[tis much largcr in scope comParcd to (++ & comParch to libraries in Java.

NET AND OBJECT-
ORIENTED APPROACH

0 Memorg management in NET Framework is a crucial aspect.

0 Memorg is allocated to instantiations of NI objects from the managec]
heap, a Pool of memory managcd }33 the C1L R. As long as there exists a
reference to an objcct, either a direct reference orvia a graph, the object is
considered to be in use.

Z When there is no reference to an ol:je:ct, and it cannot be reached or use:cl,
it becomes garEage, eligible for collection

o NET Framework includes a garbage_co"ector which runs Perioc]ica"(?, on
a separate thread from the aPPlication's thread, that enumerates a
unusable objects and reclaims the memory a"ocated to them.

the

Finalization
queue

GARBAGE COLLECTION...cont.

o Fach NET aPPlication has a set of roots, which are Pointcrs to objccts on
the managec] hc?s {managca’ orﬁy'ccts). These may be references fo static
objects, objects efined as local variables or method parameters currentlg in

scope, objects referred to bg CFU registers

0 \When the GC runs, it pauses the ap lication, and for each object referred to
in the root, it recursivclg collects all the objects reachable from the root
objects and marks them as reachable.

0 |t uses (_| | metadata and reflection to discover the objects cncapsu]ated bg
an object, and then recursively walk them.]t then enumerates all the objects on
the heap (which were initial?g allocated contiguously) using reflection. All
objects not marked as reachable are garbage.

GARBAGE COLLECTION...cont.

The GC used bg NET Framework is actua"g ’gcncratfona/’. Objcc’cs are
assigncc! a generation; ncwlg created ochcts Bclong to *(Generation O’ The
objects that survive a garbagc collection are taggcc! as '(seneration 1°, and
the (Generation 1 olslj’ects that survive another collection are ‘(Generation

2 fobjects. T‘ﬂc NE Framework uses up to Génération ok obj e

gimplified Model

Any generatior
can have some
unreachable

Alincated pojects in
Space
Allocalion
Polinter
Free Uncommitted {Reserved)
Space

GUI APPLICATIONS USING
C# & .NET

0 Windows formis used to create applications with a userinterface.
i &

0 T he following are the steps to create a \Windows [Form Application:
g P PP

I OPen a new Froject and choose the \Nindows Form APPlication

ii.Otart dragging components from the T oolbox to the [Form. T he form will
look something like this:

= Form1

GUI APPLICATIONS USING
CH & .NET ...cont.

iii. As components are added to the Form, Visual Studio assigns default

names to each one. |tis via these names that any (# code will interact with the

userinterface of the aPPlication.

iv. T he name of these components can be changed in the [7 rojocrt/és Panel

V. In addition to changing the names of components
itis also Possible to change a mgriacl array of

different Propcrties via the ProPcrtics Pancl.

wekomeText System. Windows. Forn -«

A EIEaE=
{ApplicationSettr fad
{DataBindings) —

welomeText
AcceptsReturn False
AcceptsTab Falze
; : W
iC
[(Name}

Indirates the name used in code to
identify the object.

GUI APPLICATIONS USING
CH# & .NET ...cont.

vi. Adding behavior to a Visual Studio C # aPP]icatfon:

Tl‘le next task in creating our aPP]ication is to add some {:unctigpa]itgs‘o”‘““"')\
that things haPPerx when we press the two button‘gj‘n ourform. T his
behavioris controlled via events. Foggygampl‘é;”@hen a button is Pressecl

// A ’, ’, d S R '_e:’/'
a (_Jickeventis tnggerea, — _.jons-&°

o S¥E L colleCC moded?

\ - K b] ~nehs

\ a. 2G 5 =T co e T

L gystv™" nats
1.\ -
Y ,D aw

GUI APPLICATIONS USING
C# & .NET ...cont.

Codes can be added for on Button Clici(events. SOmc cxamplcs are:

(]) Privatc void closcbutton_(:lick(objcct sender, E_vcntArgs c)

{
} CIOSCO ;

(D Privatc void hcnobuttonm(:]ick{objcct sender, EvcntArgs c)
{

welcomeTcxt.Tcxt = ”Hc"o o nameTcxt.Tcxt;

)

ADVANTAGES OF .NET

Flat{;orm inchcndcnt
5UPPorts multiPle Programming languages

Easg to c!ePloy

5upport5 various security features such as cryptographg,

aPP]ication domain, verification process etc.

WRAPPING UP

Introduced basic concepts of C# Programming.

Discussed similarities and differences between C# & other
Programming languagcs (C,C++,Java).

Discussed Objcct-—Oricntcd behaviour of C#.
Introduccc] conccpts related NE_T framework.

Explaincd NIET architecture.
Shed |ight upon Objcc’mOricntcd aPProach in NE_ T framework.

Advantages & APPIications of C#and NET.

