

Game Programming with

presented by Nathan Baur

What is libGDX?
● Free, open source cross-platform game library
● Supports Desktop, Android, HTML5, and

experimental iOS support available with
MonoTouch license ($400)

● OpenGL support means relatively high
performance despite high level of abstraction
and portability

Platform Independence
● Automatic project setup GUI tool will download

libraries, update existing projects, create new
project layout with working “Hello World”

● One main project for core, platform
independent game code

● One project each for platform specific code
like Android Manifest XML file

● APIs for handling assets, persistence,
graphics, sound, input, etc, minimize code
needed in platform specific projects

Platform Independence

Platform Independence

Life-Cycle
● Main Game class implements ActionListener

interface defining life-cycle behavior
● Methods similar to mobile app life-cycle:

– create()
– dispose()
– pause()
– render()
– resize(int width, int height)
– resume()

Life-Cycle

(diagram borrowed from http://code.google.com/p/libgdx/wiki/ApplicationLifeCycle)

Life-Cycle
● Game class delegates to Screen interface

which has a very similar life-cycle
● Using multiple Screens (menu, game,

highscore, etc) allows for behavior much like
Android Activities, although when built for
Android everything is actually happening in
only one Activity

Game Loop
● Event-driven life-cycle means main game loop

is part of the back-end
● This is good because it contributes to platform

independence
● render() method holds code for body of main

loop
● render() called at 60fps max, elapsed time

between frames provided
● This accommodates most approaches to

game loop timing

File Handling
● All assets stored in assets directory, which is by default symlinked

between projects for convenience
● Files accessed by relative path, eg

Gdx.files.internal(“data/image.png”)
● Note “/” used as pathname separator even on Windows
● File module also supports storage in other places, eg

Gdx.files.absolute("/some_dir/subdir/myfile.txt")
● FileHandle class provides interface for file system operations like

delete and copyTo
● Best to stick to read-only internal storage when possible due to

platform-specific limitations

Persistence
● Effortless key-value configuration persistence provided

through Preferences class
● Preferences instance constructed by factory

Gdx.app.getPreferences(“Name of map”)
so all details of storage are abstracted away

● Each prefs instance can store large number of values:
prefs.putInteger(“highscore”, 10)

● Types limited to Boolean, Float, Integer, Long, String
● Also includes utilities for JSON and XML based

serialization for more complex persistence tasks, but like
with assets it is best for portability to stick to Preferences
whenever possible

Graphics Overview
● Everything is based on OpenGL ES
● Different back-end for each platform (lwjgl, WebGL, etc)
● Support for 2D and 3D graphics, although I have only

used 2D
● Useful facades like Mesh and Sprite for basic graphical

tasks
● Also provides wrappers for low-level OpenGL calls when

necessary
● Built-in Camera classes for easy projection from game

coordinates to screen coordinates

Texture, Sprite, SpriteBatch
● Texture class represents imported image

– Is exempted from garbage collection, it must be disposed of manually
● TextureRegion class represents a subset of a Texture

– Useful for sprite sheets, where multiple poses or animation frames are stored
in one image

– Useful for irregularly shaped sprites, since OpenGL 1 requires texture sizes be
powers of 2

● Sprite class has a TextureRegion, concept of location, and many useful methods for
scaling, rotating, tinting, etc

● SpriteBatch is basically a canvas that TextureRegions and Sprites can be drawn to

– Uses camera projection
– Manages alpha blending

Texture, Sprite, SpriteBatch

Resolution Independence
● Game coordinates are transformed into screen

coordinates through use of viewports and
cameras

● Game coordinates are continuous by default,
but can be made discrete for games with a
“pixel-perfect” art design

Resolution Independence

scene2d and User Interfaces
● scene2d is a scene graph, which provides a different approach to

drawing 2D graphics that is more convenient for creating interfaces
– Stage and Actor concepts have children in local (relative)

coordinate systems that move and rotate with their parents
– Automatic hit detection and event-driven actions
– API is so simple and sensible that some people choose to build

their entire game in scene2d
● scene2d.ui builds convenience classes on top of scene2d for

interface design
– Provides Layouts, Tables, and a host of Widgets like Button and

Slider
● Skin class packages UI assets like images and fonts for easy

switching

Sound
● Sound object provides extremely simple

interface for playing sound effects:

● Also supports background music and low-level
PCM playback

Input
● Supports input from many sensors from

keyboard and mouse to compass and
accelerometer

● Event-driven input supported through
InputProcessor interface

● Input polling is also available as a simpler but
less reliable alternative

● Multi-touch and gesture recognition support for
touch screens

Input

Physics
● Includes wrappers for popular C++ physics

engines Box2D and Bullet3D
● Each physics engine could be a whole

presentation on its own

Box2D Overview
● World

– Manages all bodies and global properties like gravity
– Handles passage of time, movement integration,

collisions, etc
● Body

– Represents single physical object
– Made up of Fixtures
– Can be Dynamic, Static, or Kinematic

● In the Pong game example the ball is Dynamic, the
paddles are Kinematic, and the boundaries are
Static

Box2D Overview
● Fixture

– Exists in local coordinate system of parent Body
– Holds actual physical properties like shape, density, friction,

restitution
● Collision handling

– Collisions are called Contacts and occur between Fixtures
– Can be event-driven with ContactListener interface or polled with

World.getContactList()
– Contact object stores pair of Fixtures and other useful

information like the angle of the collision
– Fixtures can store references to their parent Sprite or game

entity using setUserData and getUserData, which is important if
the collision is to have some effect on the entity

Box2D Overview

Box2D Overview

Box2D Overview

Other Utilities
● MathUtils package

– Performance-oriented float versions of useful math
functions to avoid double<->float conversion

– Classes for Tween interpolation, Splines, Vectors, basic
Geometry

● Basic collection classes like Pool and Array with garbage
minimization in mind

● Particle engine with GUI editor
● BitmapFont engine with GUI editor
● Importer for files exported by popular Tiled map editor

Example Game
● Multitouch Pong game intended for touchscreen
● Code used in examples throughout presentation
● https://github.com/nathanbaur/GDXPong

https://github.com/nathanbaur/GDXPong

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

