Domain-Driven Design(DDD)

Lei Bao and Zhaochuan Shen

What is Domain-Driven Design (DDD)?

 Domain: the problem area

* The term was invented by Eric Evans, the author of book
Domain-Driven Design, published this famous book in 2004.

* According to Eric Evans, “DDD flows from the premise that
the heart of software development is knowledge of the
subject matter.”

* According to Wikipedia, “DDD is an approach to developing
software for complex needs by connecting the
implementation to an evolving model.”

* In this presentation, we introduces the principles and patterns
that should be used when modeling the domain.

Premise of DDD

The premise of DDD is as following:

* Concentrating the main goal of the project on the central
domain and its logic;

* Establishing the fundamentals of complicated designs on
models of the domain;

 Emphasizing a collaboration between technical developers
and domain experts to set up a conceptual model that
focuses on particular domain problems.

Core Concepts

* Model Driven Design (MDD)
* Ubiquitous Language

* Layered Architecture

 Main Domain Elements (Building blocks): Entities, Value,
Services, Modules

* Solutions to maintain domain objects: Aggregates, Factories,
Repositories

Model-Driven Design(MDD)

« MDD is a natural result of DDD since developers obtain their
knowledge of domain as models.

 Model refers to a set of abstractions that (partially) depicts
the domain and can solve problems from that domain.

 An MDD is software organized by a set of domain concepts
and requirement. For example, an MDD for an insurance
software framework is one in which insurance concepts, such
as quoting, auditing and billing, which also corresponds to
software constructs.

DDD and MDD

e MDD puts a domain model into the structure and design of a
software system.

This enhances the feedback between describing and learning the
domain, and implementing the required system that are focusing on
problems in that domain.

* Developers who implement MDD should know that a
modification to the code is actually a modification to the
model. A modification to the model also leads to immediate
modification to the code.

Ubiquitous Language(l)
 In reality:

* Technical experts (developers) speaks technical language
of computer science (technical terms);

 Domain experts (clients) use terminology specified to their
field of expertise (domain/business terms).

Some standard language should be built among
them!

d The goal is: this standard language and shared vocabulary

can be understood by both the technical developers and the
domain experts.

Ubiquitous Language(ll)

1 Ubiquitous Language refers to a common language structured
around the domain model and shared by both domain experts
and technical developers to communicate in activities related to
the software development.

d Ubiquitous Language is defined within bounded context.

e Context: the setting in which a word or statement appears that
determines its meaning.

* Bounded context: explicitly define the context within which a
model applies. Explicitly set boundaries in terms of team
organization, usage within specific parts of the application, and
physical manifestations such as code bases and database
schemas. Keep the model strictly consistent within these
bounds, and don’t be distracted or confused by issues outside.

Ubiquitous Language(lll)

Using ubiquitous Language:

JThe domain model is used as the core of ubiquitous
language.

A Now no “translation” between developers and domain
experts is usually needed. They can understand each other
very well.

If there are new requirements, it usually means that new
words enter the ubiquitous language.

Ubiquitous Language(IV)

(d One team one language: try to describe and discuss problems
and requirements of the model during analysis in ubiquitous
language. This helps reduce possible confusion in
communication.

[Benefit of Ubiquitous Language:
e Less risk of miscommunication
* Faster and more efficient interaction
* Knowledge of domain can reside in codebase

e Source code easier to understand (maintainability and
extensibility)

Ubiquitous Language

Bounded Context /

Layered Architecture

J Software that is built with DDD takes advantage of a layered
architecture. Different layers address different concerns.

[The basic principle of layered architecture:

 Dependencies between different layers is one-way, i.e. a
layer never knows anything above. Within a layer, an
object can use objects in its layer and in layers below it.

* Anindirect method is usually required when an object in
a lower layer really needs to have reference to an object
in the layer above it.

Typical decomposition of multilayered
architecture for DDD

 Domain layer is the heart of the
Ul(user interface) DDD.

* Objects within the domain layer
should be maximally isolated
from the other three layers.

Domain * Domain layer is responsible for all
“domain logic”(such as rules,
requirements, and behaviors for
the domain model).

Main domain elements (building block)

1 “Entities”, “values”, “services” and “modules” are the main
domain elements for a domain model.

1 They are connected with “associations”.

(1 Common pattern like “repositories” and “factories” helps to
complete the model.

* “Factories” are used to create domain objects;
* “Repositories” are used to retrieve domain objects.

Associations between elements

1 As discussed in Professor Anderson’s Lecture 3, associations refers
to “one domain element can reference another”.

1 Association may decrease maintainability: avoid unnecessary
associations and use only a minimum number of them.

J Making associations more controllable:
e Use a traversal direction association instead of bidirectional,
* Use qualifier to minimize multiplicity,
* Remove unnecessary associations.

Entities(l)

[Entity refers an object that is defined but by its identity,
rather than its attributes.

[Eric Evans claims that “ They (entities) represents a thread of
identity that runs through time and often across distinct
representations.”

 The identity we talk about here is not the identity in
Objected-oriented program(OOP), which is a reference or
a memory address OOP languages uses to keep track of
the objects instance in memory.

* Usually, identity in DDD is either an attribute of the object,
a combination of attributes, or even a behavior.

1 Example: For airlines that distinguish each seat uniquely on
each airplane, each seat is an entity under this context.

Entities(ll)

Implementing entities means creating identity. We should only focus
on object’s important characteristics that are identifying and/or can
be used to find it. Core entities may associate other attributes or
behaviors of the object. Eric Evans gives the following example on

how to establish entities on Page 95:

Customer Customer
customerlID customerlID
name Name
average sales volume Contact phone

Product category

Contact Contact

Sales representative Sales representative
Priority

Contact phone

Business Line
Product category
average sales volume

Average sales volume and
product category are not

used to identify customer.
Remove from entity.

Phone number can be
used to find customer, put
into entity.

Be cautious to make all objects entities

* Entities can be tracked. Tracking and creating identity comes
with a cost.

* |t takes a lot of careful thinking to determine what makes an
identity.

 Some performance implication in making all objects entities:
one individual instance for each object.

This can lead to system performance
degradation when dealing with thousands of instance.

So, there are cases when we just need to have some attributes
of a domain element and we are not interested in which object it
is, but what attributes it has.

Values(l)

* Value (objects) refers to an object that contains descriptive
attributes but has no conceptual identity. They describe the
characteristic of a thing.

 Example: colors is an example of value object for the symbols
displayed on the monitor.

* Value objects and entities may be different from different
perspective. When people exchange dollar bills, they don’t
distinguish between every bill; they only care the face value
of each bill. In this context, dollar bill is a value object;
however, in the eye of the Federal Reserve (who prints the
money), each bill is unique. In this context, each dollar bill is
an entity.

Values(ll)

* Value objects can reference to other objects, and they are
even allowed to reference an entity.

* Since value objects are usually sharable, they should be
immutable. They are created with a constructor, and never
modified during their lifetime. Since we need no care of
identity: we can simply delete and create new ones if needed.

* For example, if you want to change the color of something,
you destroy the old color and create a new one. Usually the
creation is done through colorservice or colorfactory.

Services ()

Sometimes an operation or process from the domain is not natural to
entity or value objects. Forcing to put such an operation into an object
would either damage the definition of objects or create artificial
objects. If so, in DDD, we can usually add a standalone interface, as
SERVICE, to the model to minimize the artificial objects.

A good service meets at least the following requirements:

it should be stateless;
* it should be defined in the common (ubiquitous) language;
* |t relates to entities or value objects, but not part of them.

* |t focuses on activities rather than entities, and therefore has a
verb name.

Services (1)

Most times services are within the infrastructure layer. However,
domain and application layer services may work together with
infrastructure services to finish operations.

Page 107, Eric gave the following example of how to partition
transfer funds services into layer:

Services Fund Transfer Domain Service
Interact with involved accounts (objects) and make transfer
Send Conformation

Modules

Modules are groups of model elements. If the whole system is a book,
each module is a chapter.

Using module has the following advantage:
* Modules help the understanding of a huge system;

 Modules expedite the independent parallel development of
system.

* Using modules satisfy the requirement of Object Oriented design:
weak coupling (minimum associations between modules) and
strong cohesion (one module handles one thing).

Life Cycle of Domain Object

On Page 123, Eric Evans shows a diagram for life of domain
object:

create

store "

Database

Active _ :
reconstitute Representation
“ y, N

modify

archive
delete

@ delete (Database or file
Representation

Challenges and Prescriptions

* Challenges:

» Maintain the invariants and rules during the whole life of
object;

» Prevent the model from getting complicated by checking
and handling the life cycles of objects.

* Prescriptions

v’ Aggregates (tight up)
v’ Factories (create)

v’ Repositories (find and retrieve)

Aggregates ()

Aggregate Root

Aggregate is a group of individual
but related objects that work or
can be treated as a unit.

Steering

Seating

Each aggregate has a unique root
entity (here is the bicycles class)
and a boundary.

v
Height
SetHeight()

/

tire

/

Position
SetPosition()

Aggregate Boundary

Aggregates (Il)

* The root of aggregate is the only accessible entity to the
client. All changes to the aggregate within the boundary are
maintained through the root. Enforcement of encapsulation!

 |f the client deletes the aggregate, all the entities within the
boundary will be deleted together.

* |f there is a change to any object within the aggregate
boundary, all the invariants and rules must be maintained. The
root entity often takes care of these requirements.

Factories(l)

Factories are a separate object (or interface) that in charge of
creation for the instances of complex objects, and particularly
aggregates. The bottom diagram shows the interactions of factory
By Eric Evans, page 138.

Three common design patterns related to factories:
e Abstract factory

* Factory method

e Builder

Request
Create

Client FACOTORY product

Product

Factories(Il)

A good factor has the following characteristics:

It should be atomic.

* Itis not allowed to give wrong results. If the required object
can not be initialized, an exception message should be passed.

* It should give an abstract type of product if possible, not a
concrete type.

 Arguments are usually necessary for factories.

There are also factories to reconstitute objects.

Factories (IlI)

Entity Factories VS Value object Factories:

* Entity Factories have to assign an id to its product; this is not true
for value object factories;

* Entity factories may only finish the required attributes for its
product, and have other details added later. Value objects from
its factory is in its final state.

Factories VS Factories for reconstitution

* Reconstitution factories do not assign a new id for entity factory;

e Reconstitution factories need to deal with the violation of
invariants and rules, rather than simply give an exception.

Domain-Driven Design, Eric Evans, Page 144-145

Repositories (I)

To get access to the existing domain objects, the developer of client
may:

* Use traversable associations (if too many, muddle the model);
* Or search the object from database, if too many
 Domain logic degenerates into queries and searchings;
* Entities becomes simple data container;
* Developer may eventually have to give up the domain layer...

Neither way works perfectly. Repository here helps!

For repositories, please see Domain-Driven Design, Eric Evans, Page 260-261

Repositories (1)

Repositories represents all objects which meets certain requirement
as a conceptual collections with advanced searching capability.

Addition and removal of certain objects are achieved by the algorithm
behind the repository, which inserts to or deletes from the database.

Here is a diagram of repository on Page 151 from Eric Evan’s book.

criteria
- Database

Client — Repositories Interface, or
atching ’

object query objects...

Repositories (lll)
Repositories have the following advantages:

* Repositories provide the clients an easy interface to acquire
an existing object, and to maintain its life cycle.

* Repositories can communicate design ideas related to data
access.

* Repositories decouple the client from the model from
technical storage, or database storage;

* With repositories, dummy implementation for testing is
simple and possible.

Diagram of building blocks for DDD

Ubiquitous
Language
RN

Names enter

Services

MDD
T

Express model as

Modules

<
Value objects

Entities

|
Encapsulate with

/

Factories

Maintain with

v

access with

N

Layered
Architecture

Repositories

| access with — 7

Domain-Driven Design, Eric Evans, Page 65

€n
Caps"/ate Aggregates
7

An example of Cargo Shipping

Whole Chapter 7 of Eric Evans’ book gives an example of DDD. Here
we give a very short review of this example. If you are interested,
please refer to his book. His starting point is an established model,
shown by the following diagram (Fig. 7.1 on Page 164.)

role

Cargo

Customer

name
Customer ID

tracking ID

Delivery History

goal

handled =

*

Handling Event

completion

time type
Delivery *
Specification
arrival time
. 0..1

destination
Carrier
from —— Movement

schedule ID

Location
to

port code

Example Implementation (l)

First Eric isolated the domain by applying layered architecture.
Here he introduced 3 application layer classes:

* Tracking Query

* Booking application

* Incident logging application

These three classes will not be included in the domain layer.

Second, for the objects in the previous slides, Eric identify if they

are entities or value object.
* Entities: customer, cargo, handle event, carrier movement;

* Value object: Delivery specification.

Example Implementation (ll)

Third, Eric recheck the association in the class diagram. Some
associations should not be bidirectional. For example, the customer
should not have a direct reference to the cargo, since this could be
problematic for return customer.

Forth, he aggregates the Delivery History and Delivery specification
class into the cargo aggregate, with root of cargo. This step is to find
aggregate.

Last, he finds necessary repositories for the entities. For example,
the booking application to function, we need to search for customer
from its repository. He found 4 repositories: customer repositories,
cargo repositories, location repositories, and carrier movement
repositories.

Example Implementation (ll)

Now, the class diagram looks like the following (Fig. 7.4 on Page
172.). From here, Eric talked about modules in this model.

In the following slide, orange line indicates the boundary of
aggregate.

Customer Repository Cargo Repository

find by Customer ID(String)

find by Customer ID(String)
find by Cargo Tracking ID(String)

find by name(String)

find by Cargo Tracking ID(String)
*y
<
* | role Cargo
*
*
Customer
. . Handlin
Delivery History > -
et * | event
lee” goal "
REPOSITORIES are prohibited =" > Delivery
from interior AGGREGATE Specification
0..1
from | Carrier
destination Movement
*
. . *
Location Repository > Location e 10 ——

find by port code(String) Carrier Repository

find by city name(String)

find by Schedule(String)
find by FromTo(Location L)

Deep Model and Supple Design

(1 Deep model: a model that gets rid of superficial and captures
all the essential of the problem. This results in a software that
is more sensitive to the way the domain expert’s think and
more responsive to the their demands.

d Supple design is complement to deep model. With supple
design, the software system is friendly to change of
requirements. In other words, with supple design, changes in
model can be realized in the code without too much extra
effort.

e A design must be easily understood.
* A design must follow the contours of the deep model of the domain.

* The code of a design should be extremely clear so that it is easy to
anticipate the consequence of a change.

Techniques required for Supple Design

We want to have a nice “supple design” in our implementation
(easy maintenance and flexible extensibility).

(d Making behaviors obvious to guarantee easy maintenance
* Intention-Revealing Interfaces
* Side-effect free functions
* Assertions

1 Reducing cost of change to enforce flexible extensibility
* Standalone Classes
* Closure of Operations
* Conceptual Contours

Intention-Revealing interface

1 The interface of a class should provide the information about
how the class can be used.

[During implementation, the name of classes and methods
should reflect their effect and purpose, and therefore

* these names should be from ubiquitous language if
possible.

* Think like a client of the method by writing a test case
before creating the methods for each behavior.

Domain-Driven Design, Eric Evans, Page 246-247

Side-effect-free functions (l)

1 In general operations (methods) can be classified into two types:
e Commands

e (Queries

(d Commands are operations that affect the state of the system,
which might cause side effect.

* For side effects, the changes to the state of the system
deviates from what we originally plan to do

d Queries are “read-only” operations. They only retrieve
information from the system without changing system’s state,
and of course should not cause side effect.

Side-effect-free functions (ll)

To increase the use of side-effect-free functions:

* Put the logic of the program into functions as much as
possible;

e Strictly distinguish between the commands and queries to
minimize the coupling between these two types of

operations;

* Try to use the value objects when a concept that fits the
responsibility.

Domain-Driven Design, Eric Evans, Page 250-251

Assertions

1 Assertions includes:

 The preconditions that must be met before the operation, so
the operation makes sense;

* The post-conditions describes the state of the system after
the operation;

* Invariants is always true for a specific class.

 Therefore:
* Clear describe the pre- and post-conditions for operations.

* Build models on coherent sets of concepts. This makes
developer easily master the model and minimize the risk of
inconsistent code.

Domain-Driven Design, Eric Evans, Page 255-256

Conceptual Contours

For a model that emerges at some point of the domain, it may
show up at other parts of the domain later. Sometimes our system
may require lots of effect to adjust to the new discovered model.

Therefore, we decompose the design elements into cohesive units,
and looking for conceptual contours with which the system can
easily get adapted to the new concepts.

The goal of conceptual contours is to find a collection of interfaces

that are appropriate in ubiquitous language, and free (or
minimized) of irrelevant objects and behaviors.

Domain-Driven Design, Eric Evans, Page 260-261

Standalone Classes

High coupling between different parts of code contradicts the
fundamental spirits of object oriented design.

Aggregates and modules are used to achieve the low coupling
code.

Another technique is to use standalone classes, where one class
does not take advantage of other domain concepts.

Domain-Driven Design, Eric Evans, Page 265-267

Closure of operations

The closure of operations refer to such operations that return value
is the same as its arguments. For example, addition with arguments
of positive numbers is closed.

Sometimes if the implementer is used in the operations, it is
essentially an argument of this operation, and hence the type of

return value “should” be the same as implementer.

Closure of operations provides high cohesion and low coupling
interfaces. Sometimes, even partially closed operations help!

Domain-Driven Design, Eric Evans, Page 268-270

Supple Design Diagram

Jfe Assertions
ition S
W &
. X%
Side-effect-free Q e‘Q@
operation & § .‘\\\\0‘
O X \
Make safe and simple <&
_ / _ Standalone
Intention-revealing classes
interfaces v
\S}.
Z

Draw from

v

Ubiquitous
Language

Domain-Driven Design, Eric Evans, Page 245

Closure
operations

Conceptual
contours

MDD

Conclusions

 We review most important concepts and methods of domain
driven design. (MDD, ubiquitous language, layered architectures,
entities, value objects, services, modules, aggregates, factories,
and repositories.)

 We review Eric Evan’s idea about supple design, which requires
intention-revealing interfaces, side-effect-free functions,
assertions, conceptual contours, standalone classes, and closure of
operations.

* Our main reference is Domain-Driven Design by Eric Evans (mainly
Chapter 2, 3, 4, 5, 6, 7, and 10). This book also provides more
detailed information and comprehensive review of DDD beyond we
discussed. Most ideas and diagrams in this presentation are
credited to this book. We also use Professor Anderson’s lecture
notes in Spring 2005 as another reference.

