

Ahmet Arif Aydin

Spring Framework and Dependency Injection

Agenda

�  What is Spring Framework
�  Intro to Spring
�  What are Beans?
�  Big Picture of Spring
�  Two Key Components of Spring(AOP&DI)
�  Spring Framework Architecture

�  Core Container Modules
�  Data Access/Integration Layer Modules
�  Web Layer Modules

�  Dependency Injection(DI) Types
�  Constructor-based Dependency Injection
�  Setter-based Dependency Injection

�  Spring Framework was created by Rod Johnson(2003) and
released under Apache 2.0 license.

�  The most popular application development framework for
enterprise Java

�  An Open source Java platform
�  Provides to create high performing, easily testable and

reusable code.
�  is organized in a modular fashion
�  simplifies java development

What is Spring Framework?

Intro to Spring-1

Spring Framework
�  enables Plain Old Java Object (POJO) based

programming model
� with POJO you don’t need EJB container product
�  utilizes existing technologies like

� ORM frameworks

�  logging frameworks

�  JEE

� Quartz
�  JDK timers

Intro to Spring-2

Spring Framework
�  is a well-designed web model-view-controller (MVC)

framework(a great alternative to Struts)
�  provides a coherent transaction management interface that be

applicable to a local transactions() local transactions or global
transactions(JTA)

�  provides a suitable API for translating technology-specific
exceptions (for instance, thrown by JDBC, Hibernate, or JDO,)
into consistent, unchecked exceptions.

�  The Inversion of Control (IoC) containers are lightweight,
especially when compared to EJB containers. Being lightweight is
beneficial for developing and deploying applications on computers
with limited resources (RAM&CPU).

�  Testing is simple because environment-dependent code is moved
into this framework.

What are Beans?

�  In Spring, POJO’s (plain old java object) are called ‘beans’ and

those objects instantiated, managed, created by Spring IoC
container.

�  Beans are created with the configuration metadata (XML file) that
we supply to the container.

�  Bean definition contains configuration metadata. With this
information container knows how to create bean, beans lifecycle,
beans dependencies

�  After specifying objects of an application, instances of those
objects will be reached by getBean() method.

�  Spring supports given scope types for beans:
�  Singleton (a single instance per Spring IoC container (default))
�  Prototype
�  Request
�  Session
�  Global-session

Scope of Beans

�  Spring supports given scope types for beans:

�  Singleton (a single instance per Spring IoC container (default))
�  Prototype
� Request
�  Session
� Global-session

Big Picture of Spring (High-level view)

The Spring IoC
container makes use of
Java POJO classes and
configuration metadata
to produce a fully
configured and
executable system or
application.

Two Key Components of Spring

� Dependency Injection (DI) helps you decouple your

application objects from each other

� Aspect Oriented Programming (AOP)
� The key unit of modularity is the aspect in AOP (class in

OOP)
� Cross-cutting concerns are the functions that span multiple

points of an application.

� Cross-cutting concerns are conceptually separate from the
application's business logic.

� AOP helps you decouple cross-cutting concerns from the
objects that they affect Examples (logging, declarative
transactions, security, and caching)

Spring Framework Architecture

� Core Module : The
Spring container is at the
core module.
� The Spring container is

responsible to create objects,
wire them together an
manage them form creation
until destruction.

� The Spring container utilizes
Dependency Injection to
manage objects that make up
an application.

Spring Framework Architecture

� Beans Module provides
BeanFactory,(preferred
when the resources are
limited such as mobile
devices or applet based
applications)

Spring Framework Architecture
 �  Context Module builds on the

solid base provided by the Core and
Beans modules and it (medium to
access any objects defined and
configured)
�  ApplicationContext Container (Spring’s

more advanced container). This includes
all functionality of BeanFactory. The
most commonly used implementations
are:
�  FileSystemXmlApplicationContext (loads

definitions of the beans from an XML file.
Need to provide full path of xml file)

�  ClassPathXmlApplicationContext loads
definitions of the beans from an XML file.
Does not need to provide the full path it will
work with the xml file in the Classpath)

�  WebXmlApplicationContext(loads the
XML file with definitions of all beans from
within a web application.)

Spring Framework Architecture

�  The JDBC (provides a JDBC-
abstraction layer that removes the need
to JDBC related coding)

�  The ORM (provides integration layers
for popular object-relational mapping
APIs, including JPA, JDO, Hibernate,
and iBatis)

�  The OXM provides an abstraction layer
that supports Object/XML mapping
implementations for JAXB, Castor,
XMLBeans, JiBX and XStream.

�  The Java Messaging Service (features
for producing and consuming
messages.)

�  The Transaction module supports
programmatic and declarative
transaction management for classes that
implement special interfaces and for all
your POJOs.

Spring Framework Architecture
 �  The Web module provides

�  Basic web-oriented integration features
(ie multipart file-upload functionality
and the initialization of the IoC container
using servlet listeners and a web-
oriented application context.

�  The Web-Servlet module contains
Spring's MVC implementation for
web applications.

�  The Web-Struts module contains the
support classes for integrating a
classic Struts web tier within a
Spring application.

�  The Web-Portlet module provides
the MVC implementation to be used
in a portlet environment and
mirrors the functionality of Web-
Servlet module.

Dependency Injection (DI)

�  Spring is most identified with Dependency Injection

(DI) technology.
�  DI is only one concrete example of Inversion of Control.
�  In a complex Java application, classes should be loosely

coupled. This feature provides code reuse and independently
testing classes.

�  DI helps in gluing loosely coupled classes together and at the
same time keeping them independent.

�  Using dependency injection helps to see easily what the
component dependencies are.

�  DI is preferable because it makes testing easier

Dependency Injection Types

� DI will be accomplished by given two ways:
�  passing parameters to the constructor (used for mandatory

dependencies) or

�  using setter methods(used for optional depenedencies).

Constructor-based DI

�  Constructor based DI occurs when the container invokes a

class constructor with a number of arguments, each
representing a dependency on other class.

Constructor-based DI (Plane.java)

Constructor-based DI(RouteFinder.java)

Constructor-based DI (RouteTest.java)

Constructor-based DI(Beans.xml)

Setter-based DI (Plane.java)

Setter-based DI(RouteFinder.java)

Setter-based DI (RouteTest.java)

Setter-based DI(Beans.xml)

Conclusion

�  The most popular application development framework for

enterprise Java
�  Spring Framework (Architecture) is modular and allows you to

pick and choose modules that are applicable to your application.
�  POJO’s (plain old java object) are called ‘beans’ and those objects

instantiated, managed, created by Spring IoC container.
�  The Spring IoC container makes use of Java POJO classes and

configuration metadata to produce a fully configured and
executable system or application.

�  DI helps in gluing loosely coupled classes together and at the same
time keeping them independent.

References

�  http://www.cs.colorado.edu/~kena/classes/5448/f11/
lectures/30-dependencyinjection.pdf

�  Spring Framework 3.1 Tutorial
�  http://courses.coreservlets.com/Course-Materials/

spring.html
�  http://martinfowler.com/articles/injection.html

Questions/Discussions

