Spring Framework and Dependency Injection

Ahmet Arif Aydin

Agenda

® What is Spring Framework

® Intro to Spring

® What are Beans?

* Big Picture of Spring

* Two Key Components of Spring(AOP&DI)

® Spring Framework Architecture
® Core Container Modules

® Data Access/Integration Layer Modules
e Web Layer Modules

L Dependency Injection(DI) Types
¢ Constructor-based Dependency Injection

e Setter-based Dependency Injection

What is Spring Framework?

® Spring Framework was created by Rod Johnson(2003) and

released under Apache 2.0 license.

® The most popular application development framework for

enterprise Java
® An Open source Java platform

® Provides to create high performing, easily testable and

reusable code.
® s organized in a modular fashion

* simplities java development

Intro to Spring-1

Spring Framework

® enables Plain Old Java Object (POJO) based

programming model
* with POJO you don’t need E]B container product

® utilizes existing technologies like
¢ ORM frameworks
® logging frameworks
e JEE
® Quartz
¢ |DK timers

Intro to Spring-2

Spring Framework

® is a well-designed web model-view-controller (MVC)
framework(a great alternative to Struts)

® provides a coherent transaction management interface that be
applicable to a local transactions() local transactions or global
transactions(JTA)

® provides a suitable API for translating technology-specific
exceptions (for instance, thrown by JDBC, Hibernate, or J[DO,)
into consistent, unchecked exceptions.

® The Inversion of Control (IoC) containers are lightweight,
especially when compared to EJB containers. Being lightweight is
beneticial for developing and deploying applications on computers

with limited resources (RAM&CPU).

° Testing is simple because environment—dependent code is moved
into this framework.

What are Beans?

® In Spring, POJO’s (plain old java object) are called ‘beans’ and
those objects instantiated, managed, created by Spring loC
container.

® Beans are created with the configuration metadata (XML file) that
we supply to the container.

® Bean definition contains configuration metadata. With this
information container knows how to create bean, beans lifecycle,
beans dependencies

® After specitying objects of an application, instances of those

objects will be reached by getBean() method.

® Spring supports given scope types for beans:
® Singleton (a single instance per Spring loC container (default))
® Prototype
® Request
® Session
¢ Global-session

e

Scope of Beans

* Spring supports given scope types for beans:
® Singleton (a single instance per Spring loC container (default))
® Prototype
® Request
® Session

® Global-session

<!-- A bean definition with singleton scope -->
<bean id="..." class="..." scope="singleton">
<!-- collaborators and configuration for this bean go here -->

</bean>

Big Picture of Spring (High-level view)

JavaPOJO classes

Metadata |
- The Spring container

Final Result

Readyto use
application

The Spring IoC
container makes use of
Java POJO classes and
configuration metadata
to produce a fully
configured and
executable system or

application.

Two Key Components of Spring

° Dependency Injection (DI) helps you decouple your

application objects from each other

* Aspect Oriented Programming (AOP)

® The key unit of modularity is the aspect in AOP (class in
OOP)

* Cross-cutting concerns are the functions that span multiple
points of an application.

® Cross-cutting concerns are conceptually separate from the
application's business logic.

® AOP helps you decouple cross-cutting concerns from the

objects that they affect Examples (logging, declarative
transactions, security, and caching)

Spring Framework Architecture

® Core Module : The
Spring container is at the

Data Access Integration Web (MvC/Remoting)

JDBC | | ORM Web | | Servet core module.

0XM IMS r . ® The Spring container is

responsible to create objects,

Transactions

wire them together an
manage them form creation

until destruction.
Core Container

e Lo

® The Spring container utilizes
Dependency Injection to

manage objects that make up
an application.

/

Spring Framework Architecture

Data Access Integration

JDBC

ORM

0OXM

M5

Transactions

Web (MvC/Remoting)

Wehb

Servlet

Porlet

Core Container

o]

[Context

* Beans Module provides
BeanFactory, (preferred
when the resources are
limited such as mobile
devices or applet based
applications)

Spring Framework Architecture

® Context Module builds on the

Spring Framework solid base provided by the Core and
Beans modules and it (medium to
Data Access Integration Web (MvC/Remoting] access any Obj ects defined and
JDBC ORM Web Pa— configured)

o S * ApplicationContext C.Jontalner.(§pr1ng’s
— S more advanced container). This includes

Trancactions all functionality of BeanFactory. The

most commonly used implementations
_ are:

A0 Aspects)|\ Tumentaton FileSystem XmlApplicationContext (loads

definitions of the beans from an XML file.

Core Container
Need to provide full path of xml file)

S - S Expression Clqskﬁl?athmlApplication Context loailds
Language definitions of the beans from an XML file.
Does not need to provide the full path it will
work with the xml file in the Classpath)
Test

WebXmlApplicationContext(loads the

XML file with definitions of all beans from

within a web application.)

/

Spring Framework Architecture

® The JDBC (provides a JDBC-

Soring Framework
abstraction layer that removes the need i

. - 0§
to JDBC related COdmg) Data Access Integration Web (MvC/Remating)

® The ORM (provides integration layers
for popular object-relational mapping 1DBC ORM Web Serviet

APIs, including JPA, JDO, Hibernate, OXM IMS
and iBatis) Porlet Struts

® The OXM provides an abstraction layer Transactions
that supports Object/ XML mapping

implementations for JAXB, Castor,

AOP Aspects || Instrumentation

XMLBeans, JiBX and XStream.

® The Java Messaging Service (features Core Container
for producing and consuming

Expression
messages.) Beans Core Context P

Language
® The Transaction module supports

programmatic and declarative

transaction management for classes that Test

implement special interfaces and for all

kyour PO]JOs.

Spring Framework Architecture
® The Web module provides

® Basic web-oriented inteoration features

Spring Framework
e (ie multipart file-upload functionality

Data Access Integration Web (MVC/Remoting) and the initialization of the IoC container
using servlet listeners and a web-

JDBC ORM Web servlet oriented application context.

oxMm S ® The Web-Servlet module contains

Porlet Struts Spring's MVC implementation for
Transactions web applications.
® The Web-Struts module contains the
AOP Aspects || Instrumentation support classes for integrating a
) classic Struts web tier within a
Core Container . . .
Sprmg apphcatlon.
Expression .

Beans Core Context g ® The Web-Portlet module prov1des
the MVC implementation to be used
in a portlet environment and

Test

mirrors the functionality of Web-

Servlet module.

/

Dependency Injection (DI)

® Spring is most identified with Dependency Injection

(DI) technology.
e DIis only one concrete example of Inversion of Control.

® In a complex Java application, classes should be loosely
coupled. This feature provides code reuse and independently

testing classes.

® DI helps in gluing loosely coupled classes together and at the
same time keeping them independent.

* Using dependency injection helps to see easﬂy what the
component dependencies are.

e DIis preferable because it makes testing easier

Dependency Injection Types

* DI will be accomplished by given two ways:

® passing parameters to the constructor (used for mandatory

dependencies) or

® using setter methods(used for optional depenedencies).

e

Constructor-based DI

® Constructor based DI occurs when the container invokes a
class constructor with a number of arguments, each

representing a dependency on other class.

e

Constructor-based DI (Plane.java)

1 public class Plane {

2

3 private RouteFinder routeChecker;

4

5

6= | public Plane (RouteFinder routeChecker) {
7 System.out.println("Inside Plane Constructor”);
8 this.routeChecker = routeChecker;

s |y

10

1= public void routeCheck() {

12 routeChecker.findRoute();

;)

14

15 }

e

Constructor-based DI(RouteFinder.java)

g o

1

-
5
6
7
8
9
0
11

public class RouteFinder {

public RouteFinder(){
System.out.printIn("Inside RouteFinder's constructor”);

)

public void findRoute(
System.out.println

)

) {
("I

nside findRoute method in RouteFinder ");

}

e

Constructor-based DI (RouteTest.java)

1

2= import org.springframework.context.ApplicationContext;

3 import org.springframework.context.support.ClassPathXmlApplicationContext;
4

5 public class RouteTest {

6

7= public static void main(String[] args) {

8

9 ApplicationContext context =new ClassPathXmlApplicationContext("Beans.xml");
10

11 Plane rc = (Plane) context.getBean("plane");

12

13 rc.routeCheck();

14

15)

16

17 }

INFO: Pre-instantiating singletons in org.springframey
Inside RouteFinder's constructor

Inside Plane Constructor

Inside findRoute method in RouteFinder

e

Constructor-based DI(Beans.xml)

1

2 <2xml version="1.8" encoding="UTF-8"?>

3

4 <beans

5 xmlns="http://www. springframework.org/schema/beans"”

6 xmlns:xsi="http://www.w3.0rg/2601/XMLSchema-instance”

7 xsi:schemalocation="http://www.springframework.org/schema
8 /beans http://www.springframework.org/schema/beans/spring-beans-3.8.xsd">
9

L@

11 <bean id="plane" class="Plane">

12 <constructor-arg ref="route"/>

13 </bean>

14

15

16 <bean id="route" class="RouteFinder"> </bean>

L7

18 </beans>

19

Setter-based DI (Plane.java)

1

2 public class Plane {

3

4 private RouteFinder routeChecker;

5

6 // a setter method to inject the dependency.

7c public void setRoute(RouteFinder routeChecker) {
8 System.out.println("Inside setRoute methon in Plane”);
g this.routeChecker = routeChecker;

10 }

11

12 // a getter method to return routeChecker

13 public RouteFinder getRoute() {

14 return routeChecker;

5 }

L6

17¢ public void routeCheck() {

18 routeChecker.findRoute();

19 }

% }

Setter-based DI(RouteFinder.java)

g o

1

-
5
6
7
8
9
0
11

public class RouteFinder {

public RouteFinder(){
System.out.printIn("Inside RouteFinder's constructor”);

)

public void findRoute(
System.out.println

)

) {
("I

nside findRoute method in RouteFinder ");

}

Setter-based DI (RouteTest.java)

2= import org.springframework.context.ApplicationContext;

3 import org.springframework.context.support.ClassPathXmlApplicationContext;
4

5 public class RouteTest {

6

7= public static void main(String[] args) {

8

9 ApplicationContext context =new ClassPathXmlApplicationContext("Beans.xml");
10

11 Plane rc = (Plane) context.getBean("plane");

12

13 rc.routeCheck();

14

15 }

16

17} fNov 16, 2012 12:20:36 AM org.springframev
INFO: Refreshing org.springframework.cont
Nov 16, 2012 12:20:36 AM org.springframev
INFO: Loading XML bean definitions from ¢
Nov 16, 2012 12:28:36 AM org.springframev
INFO: Pre-instantiating singletons in org
Inside RouteFinder's constructor

Inside setRoute methon in Plane
Inside findRoute method in RouteFinder

Setter-based DI(Beans.xml)

1

2 <2xml version="1.8" encoding="UTF-8"?>

3

4 <beans

5 xmlns="http://www. springframework.org/schema/beans"

6 xmlns:xsi="http://www.w3.0rg/2601/XMLSchema-instance”

7 xsi:schemalocation="http://www.springframework.org/schema/beans
8 http://www. springframework.org/schema/beans/spring-beans-3.0.xsd">
9

10

11 <bean id="plane" class="Plane">

12 <property name="route" ref="route"/>

13 </bean>

14

15

16 <bean id="route" class="RouteFinder"> </bean>

17

18 </beans>

Conclusion

® The most popular application development framework for

enterprise Java

® Spring Framework (Architecture) is modular and allows you to

pick and choose modules that are applicable to your application.

* POJO’s (plain old java object) are called ‘beans’ and those objects

instantiated, managed, created by Spring loC container.

® The Spring IoC container makes use of Java POJO classes and
configuration metadata to produce a tully configured and

executable system or application.

® DI helpsin gluing loosely coupled classes together and at the same

time keeping them independent.

References

® http://www.cs.colorado.edu/~kena/classes/5448/f11/
lectures/30-dependencyinjection.pdf

® Spring Framework 3.1 Tutorial

° http: / / courses.coreservlets.com/ Course-Materials/

spring. html

® http://martinfowler.com/articles/injection.html

Questions/Discussions

2222 2

