
© Kenneth M. Anderson, 2012

Dependency Injection

Kenneth M. Anderson
University of Colorado, Boulder

Lecture 30 — CSCI 4448/5448 — 12/13/12

1

© Kenneth M. Anderson, 2012

Goals of the Lecture

• Introduce the topic of dependency injection

• See examples using the Spring Framework

• Note: I’m using Spring 2.5.6 for this lecture

• The latest production release is 3.2.0.RC2

• The latest development release is 3.1.3

• I’m only going to scratch the surface of Spring’s capabilities

• It is an extremely powerful framework that provides TONS of
functionality (more than just dependency injection)

• Note: you need to download the “with-dependencies” .zip file in order to
acquire all of the .jar files you need to run the examples

2

© Kenneth M. Anderson, 2012

Dependency Injection

• Dependency Injection is

• a technique for assembling applications

• from a set of concrete classes

• that implement generic interfaces

• without the concrete classes knowing about each other

• This allows you to create loosely coupled systems as the code you write only
ever references the generic interfaces that hide the concrete classes

• Dependency Injection is discussed in a famous blog post by Martin Fowler

• <http://martinfowler.com/articles/injection.html>

3

http://martinfowler.com/articles/injection.html
http://martinfowler.com/articles/injection.html

© Kenneth M. Anderson, 2012

Fowler’s Example

4

MovieLister MovieFinder

TabDelimitedMovieFinder

A MovieLister class is able to list movies with certain characteristics after
being provided a database of movies by an instance of MovieFinder

MovieFinder is an interface; TabDelimitedMovieFinder is a concrete class that
can read in a movie database that is stored in a tab-delimited text file

© Kenneth M. Anderson, 2012

The Goal: Loosely-Coupled Systems

5

• Our goal (even with the simple system on the previous slide) is to avoid
having our code depend on concrete classes

• In other words, we do NOT want to see something like this

• public class MovieLister {

• private MovieFinder finder;

• public MovieLister() {

• this.finder = new TabDelimitedMovieFinder(“movies.txt”);

• }

• …

• }
Dependency on Concrete Class

Dependency on hard-coded string

© Kenneth M. Anderson, 2012

Discussion

• The code on the previous slide has two concrete dependencies

• a reference to a concrete class that implements MovieFinder

• a reference to a hard-coded string

• Both references are brittle

• The name of the movie database cannot change without causing
MovieLister to be changed and recompiled

• The format of the database cannot change without causing MovieLister to
be changed to reference the name of the new concrete MovieFinder
implementation

6

© Kenneth M. Anderson, 2012

Our Target (I)

• For loose-coupling to be achieved, we need code that looks like this

• public class MovieLister {

• private MovieFinder finder;

• public MovieLister(MoveFinder finder) {

• this.finder = finder;

• }

• …

• }

• and, furthermore, nowhere in our source code should the strings
“TabDelimitedMovieFinder” or “movies.txt” appear… nowhere!

7

© Kenneth M. Anderson, 2012

Our Target (II)

• As much as possible, get rid of code with the form
• Foo f = new ConcreteFoo();

• Indeed, for the MoveLister system, we would even like to see code like this
• public class Main {

• private MovieLister lister;
• public void setMovieLister(MovieLister lister) { this.lister = lister;}
• public List<Movie> findWithDirector(String director) {

• return lister.findMoviesWithDirector(director);
• }
• public static void main(String[] args) {

• new Main().findWithDirector(args[0]); // add code to print list of movies
• }

• } 8

We want this to work
even with no explicit call
to setMovieLister();

© Kenneth M. Anderson, 2012

Two types of dependency injection

• In the previous two slides, we’ve seen (implied) examples of two types of
dependency injection

• Constructor Injection

• public MovieLister(MoveFinder finder) {

• this.finder = finder;

• }

• Setter Injection

• public void setMovieLister(MovieLister lister) { this.lister = lister;}
• In the former, the MovieLister class indicates its dependency via its

constructor (“I need a MovieFinder”); In the second, the Main class indicated
its dependency via a setter (“I need a MovieLister”)

9

© Kenneth M. Anderson, 2012

So, what is dependency injection?

• The idea here is that classes in an application indicate their dependencies in
very abstract ways

• MovieLister NEEDS-A MovieFinder

• Main NEEDS-A MovieLister

• and then a third party injects (or inserts) a class that will meet that
dependency at run-time

• The “third party” is known as a “Inversion of Control container” or a
“dependency injection framework”

• There are many such frameworks; one example is Spring which has been
around in some form since October 2002

10

© Kenneth M. Anderson, 2012

The basic idea

• Take

• a set of components (concrete classes + interfaces)

• Add

• a set of configuration metadata

• Provide that to

• a dependency injection framework

• And finish with

• a small set of bootstrap code that gets access to an IoC container,
retrieves the first object from that container by supplying the name of a
generic interface, and invokes a method to kick things off

11

© Kenneth M. Anderson, 2012

Example

• For instance, Fowler’s example uses the following Spring-specific code to create
an instance of MovieLister

• public void testWithSpring() throws Exception {

• ApplicationContext ctx = new FileSystemXmlApplicationContext("spring.xml");

• MovieLister lister = (MovieLister) ctx.getBean("MovieLister");

• Movie[] movies = lister.moviesDirectedBy("Terry Gilliam");

• }

• “spring.xml” is a standard-to-Spring XML file containing metadata about our
application; it contains information that specifies that MoveLister needs a
TabDelimitedMovieFinder and that the database is in a file called “movies.txt”

• Spring then ensures that TabDelimitedMovieFinder is created using
“movies.txt” and inserted into MovieLister when ctx.getBean() is invoked 12

© Kenneth M. Anderson, 2012

getBean()?

• In Spring, POJOs (plain old java objects) are referred to as “beans”

• This is a reference to J2EE’s notion of a JavaBean

• which is a Java class that follows certain conventions

• a property “foo” of type String is accessible via

• public String getFoo();

• and

• public void setFoo(String foo);

• Once you have specified what objects your application has in a Spring
configuration file, you pull instances of those objects out of the Spring
container via the getBean method

13

© Kenneth M. Anderson, 2012

Spring’s Hello World example

• I shall now possibly horrify you with a “Hello World” example written using
Spring

• I say “horrify” because it will seem horribly complex for a Hello World
program

• The complexity is reduced however when you realize that Spring is
architected for really large systems

• and the “complexity tax” imposed by the framework pays off when you are
dealing with large numbers of objects that need to be composed together

• the “complexity tax” pays dividends when you are able to add a new
type of object to a Spring system by adding a new .class file to your
classpath and updating one configuration file

14

© Kenneth M. Anderson, 2012

Spring’s Hello World (I)

• Note: example taken from the Apress book “Pro Spring 2.5”

• First, define a MessageSource class

15

public class MessageSource {1
2

 private String message;3
4

 public MessageSource(String message) {5
 this.message = message;6
 }7

8
 public String getMessage() {9
 return message;10
 }11

12
}13

14

© Kenneth M. Anderson, 2012

Spring’s Hello World (II)

• Second, define a MessageDestination interface and a concrete implementation

16

public interface MessageDestination {1
2

 public void write(String message);3
4

}5
6

public class StdoutMessageDestination implements MessageDestination {1
2

 public void write(String message) {3
 System.out.println(message);4
 }5

6
}7

8

© Kenneth M. Anderson, 2012

Spring’s Hello World (III)

• Third, define a MessageService interface

17

public interface MessageService {1
2

 public void execute();3
4

}5
6

© Kenneth M. Anderson, 2012

Spring’s Hello World (IV)

• Fourth, define a concrete implementation of MessageService

18

public class DefaultMessageService implements MessageService {1
2

 private MessageSource source;3
 private MessageDestination destination;4

5
 public void setSource(MessageSource source) {6
 this.source = source;7
 }8

9
 public void setDestination(MessageDestination destination) {10
 this.destination = destination;11
 }12

13
 public void execute() {14
 destination.write(source.getMessage());15
 }16

17
}18

19

© Kenneth M. Anderson, 2012

Spring’s Hello World (IV)

• Fifth, create a main program that gets a Spring container, retrieves a
MessageService bean, and invokes the service

19

import org.springframework.beans.factory.support.BeanDefinitionReader;1
import org.springframework.beans.factory.support.DefaultListableBeanFactory;2
import org.springframework.beans.factory.support.PropertiesBeanDefinitionReader;3
import org.springframework.core.io.FileSystemResource;4

5
import java.io.File;6

7
public class DISpringHelloWorld {8

9
 public static void main(String[] args) {10
 DefaultListableBeanFactory bf = new DefaultListableBeanFactory();11
 BeanDefinitionReader reader = new PropertiesBeanDefinitionReader(bf);12
 reader.loadBeanDefinitions(13
 new FileSystemResource(14
 new File("hello.properties")));15

16
 MessageService service = (MessageService) bf.getBean("service");17
 service.execute();18
 }19

20
}21

22

Spring Init Code

Where the magic happens

© Kenneth M. Anderson, 2012

Spring’s Hello World (V)

• I say “magic” on the previous slide, because with that call to getBean(), the
following things happen automatically

• an instance of MessageSource is created and configured with a message

• an instance of StdoutMessageDestination is created

• an instance of MessageService is created

• the previous two instances (message source, message destination) are
plugged into MessageService

• In short, you got back an instance of MessageService without having to
create any objects; and, the object you got back was ready for use

• you just had to invoke “execute()” on it

20

© Kenneth M. Anderson, 2012

Spring’s Hello World (VI)

• How does the magic happen?

• With the hello.properties file

• It defines three beans: source, destination, and service
• $0 refers to a constructor argument; (class) sets the concrete class of the

bean; (ref) references a bean defined elsewhere
• With this information, the “service” bean can be created and configured

21

source.(class)=MessageSource1
source.$0=Hello Spring2
destination.(class)=StdoutMessageDestination3
service.(class)=DefaultMessageService4
service.source(ref)=source5
service.destination(ref)=destination6

7

© Kenneth M. Anderson, 2012

XML Configuration Files

• The use of property files are now deprecated; instead, configuration metadata
is stored in XML files; Here’s an XML file equivalent to hello.properties:

22

<?xml version="1.0" encoding="UTF-8"?>1
<beans xmlns="http://www.springframework.org/schema/beans"2
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"3
 xmlns:lang="http://www.springframework.org/schema/lang"4
 xsi:schemaLocation="5
http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd6
http://www.springframework.org/schema/lang http://www.springframework.org/schema/lang/spring-lang-2.5.xsd">7

8
 <bean id="source" class="MessageSource">9
 <constructor-arg index="0" value="Hello XML Spring" />10
 </bean>11

12
 <bean id="destination" class="StdoutMessageDestination" />13

14
 <bean id="service" class="DefaultMessageService">15
 <property name="source" ref="source" />16
 <property name="destination" ref="destination" />17
 </bean>18
 19
</beans>20

21

© Kenneth M. Anderson, 2012

Spring’s Hello World (VII)

• To use hello.xml, the main program is simplified to:

23

import org.springframework.beans.factory.xml.XmlBeanFactory;1
import org.springframework.core.io.FileSystemResource;2

3
import java.io.File;4

5
public class DIXMLSpringHelloWorld {6

7
 public static void main(String[] args) {8
 XmlBeanFactory bf =9
 new XmlBeanFactory(10
 new FileSystemResource(11
 new File("hello.xml")));12

13
 MessageService service = (MessageService) bf.getBean("service");14
 service.execute();15
 }16

17
}18

19

© Kenneth M. Anderson, 2012

The Infamous Zoo Example

• Way back in Lecture 4, I mentioned that it was possible to create a version of
the Zoo program that would only reference “Animal” and not any of its
subclasses (Dog, Cat, Hippo, etc.)

• To do this in Spring, we make use of its ability to specify collection classes in
its configuration XML files (see next slide)

• The main routine is simply a variant on what we’ve seen before

• we will load a “zoo.xml” configuration file

• retrieve the “zoo” bean

• and invoke its “exerciseAnimals()” method

24

© Kenneth M. Anderson, 2012

The zoo.xml file

25

<?xml version="1.0" encoding="UTF-8"?>1
<beans xmlns="http://www.springframework.org/schema/beans"2
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"3
 xmlns:lang="http://www.springframework.org/schema/lang"4
 xsi:schemaLocation="5
http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd6
http://www.springframework.org/schema/lang http://www.springframework.org/schema/lang/spring-lang-2.5.xsd">7

8
 <bean id="zoo" class="Zoo">9
 <constructor-arg index="0">10
 <list>11
 <ref local="bat" />12
 <ref local="cat" />13
 <ref local="dog" />14
 <ref local="elephant" />15
 <ref local="hippo" />16
 <ref local="lion" />17
 <ref local="rhino" />18
 <ref local="tiger" />19
 <ref local="wolf" />20
 </list>21
 </constructor-arg>22
 </bean>23

24
 <bean id="bat" class="Bat" />25
 <bean id="cat" class="Cat" />26
 <bean id="dog" class="Dog" />27
 <bean id="elephant" class="Elephant" />28
 <bean id="hippo" class="Hippo" />29
 <bean id="lion" class="Lion" />30
 <bean id="rhino" class="Rhino" />31
 <bean id="tiger" class="Tiger" />32
 <bean id="wolf" class="Wolf" />33

34
</beans>35

36

Here we define instances of
animal subclasses; this is
where the subclass names
are referenced (nowhere else)

Here, we define that there is a
bean called “zoo” and it takes
a parameter to its constructor
that is a list of beans, in this
case beans that reference the
Animal subclasses below

© Kenneth M. Anderson, 2012

Wrap Up

• This represents a barebones introduction to dependency injection frameworks

• You’ve seen only a smidgen of Spring’s functionality

• But, you’ve seen the core feature of dependency injection frameworks

• The ability to remove the names of concrete classes out of your source
code while having those classes automatically instantiated and injected
into your system based on configuration metadata

26

© Kenneth M. Anderson, 2012

Semester Wrap-Up

• Reviewed core OO A&D concepts and techniques

• Covered design patterns and saw examples of how they can be integrated
into OO A&D life cycles

• Saw a wide range of patterns (there are many more out there)

• Covered features of the Android and iOS mobile application frameworks

• Saw the use of design patterns in these frameworks

• Covered refactoring, object-relational mapping and dependency injection

• Provided you an opportunity to build a mobile app and/or web service and
make use of design patterns in your prototypes

27

© Kenneth M. Anderson, 2012

Coming Up Next Time

• All done!

• There is no “next time”

• Have a great winter break!

28

