
Object Relational Mapping

Kenneth M. Anderson
University of Colorado, Boulder

Lecture 29 — CSCI 4448/5448 — 12/11/12

1

Credit where Credit is Due

• The slides that cover Hibernate and JPA were developed by Aaron Schram

• as part of his graduate presentation for this class

• Used with permission (Thanks Aaron!)

2

Goals of the Lecture

• Introduce the topic of object-relational mapping

• See examples in

• Ruby on Rails

• Hibernate

3

Object-Relational Mapping

• Until recently, the most efficient way to store data was in a relational database

• A relational database can store vast amounts of data in a structured way
that allows for efficient storage, access, and search

• More recently, so called NoSQL solutions have been gaining production
use on truly vast datasets with realtime and concurrent operational
constraints

• Think Facebook and Twitter and their use of Hadoop and Cassandra

4

The Trouble with Objects (I)

• From an OO A&D standpoint, the problem with these persistence
mechanisms is that their core abstractions are not objects

• They are tables with rows and columns (RDBMS)

• Or

• They are (some variation on) key-value pairs (NoSQL)

5

The Trouble with Objects (II)

• The OO world, on the other hand, has

• Classes, sub-classes, inheritance, associations

• Objects, attributes, methods, polymorphism

• These concepts do not easily map into the abstractions of persistence
mechanisms

• Even the creation of serialization mechanisms is non-trivial with the work
that has to go in to traversing and reconstituting an object graph

6

An Example

7

fetch()
sit()

name
spayed

Dog

playWithPet()
goForWalk()

name
Owner+

Discussion (I)

• Think about how you would represent the previous UML diagram in a relational
database

• In the system, you will have Dog objects and Owner objects and some of
them will be related to each other

• You will at least have

• a table called dogs to store Dog instances and

• a table called owners to store Owner instances

• Indeed, this is a convention of many object-relational mapping systems

• class names are singular; table names are the associated plural form of
the word: Person ⇒ People ; Cat ⇒ Cats; etc.

8

Discussion (II)

• Furthermore, for each table

• you would have columns that correspond to each attribute (plus an implicit
id column)

• each row would correspond to an instance of the class

• a spayed dog named Fido might have a row like:

• 1 | Fido | true

9

Discussion (III)

• How do we handle the relationship between Dog and Owner?

• Based on the diagram

• Each owner has a single dog

• Each dog has at least one owner

• This means that two owners can own the same dog

• Owner participates in a “has_one” relationship with Dog

• Dog participates in a “has_many” relationship with Owner

10

Discussion (IV)

• How do we handle the relationship between Dog and Owner?

• The short answer is

• foreign key relationships and join tables

• The somewhat longer answer is that most object-relational mapping
systems have ways to specify these relationships

• They then take care of the details automatically

• You might see code like:

• List<Owner> owners = dog.getOwners();

• Behind the scenes, the method will hide the database calls required to
find which owners are associated with the given dog

11

Discussion (V)

• How do we handle the relationship between Dog and Owner?

• The relationship between Dog and Owner can be handled such that

• Each instance of dog is assigned a unique id

• 1 | Fido | true

• 2 | Spot | false

• Likewise owners

• 1 | Ken

• 2 | Max

• A third table is then used to maintain mappings between them

• 1 | 1 ; 1 | 2 ; 2 | 2

• This says that Fido is owned by Ken and Max and Spot is owned by Max

12

Discussion (VI)

• That third table is known as a join table and has the structure

• dog_fk | owner_fk

• “1 | 1” in a row says that dog 1 is owned by owner 1

• When it is time to implement the code

• List<Owner> owners = dog.getOwners();

• Then

• the code gets the id of the current dog

• asks for all rows in the join table where dog_fk == “id of current dog”

• this provides it with some number of rows; each row provides a corresponding
owner_id which is used to lookup the names of the associated owners

13

A complication

14

fetch()
sit()

name
spayed

Dog

playWithPet()
goForWalk()

name
Owner+

growl()

weight
age

Canine

talk()

weight
age

Person

Now what?

Discussion (I)

15

• The new version of the example adds parent classes to Dog and Owner

• In our previous discussion, we said that

• each class gets a table and each object is represented as a row in that
table

• We also saw that associations between classes get handled via join tables,
which are distinct tables in which the rows track information about a
specific instance of the association

• How is inheritance handled?

Discussion (II)

16

• How is inheritance handled?

• The answer is “it varies across object-relational mapping systems”

• Some systems, such as hibernate, have options to embed the attributes of
the superclass into the tables of the subclasses

• Rather than one table per class, no table is generated for the superclass;
instead one table per (leaf) subclass is generated

• the subclass table then has columns for each of the superclass atts

• Some systems, such as ActiveRecord (for Ruby on Rails) have options for
creating a single table for the superclass and for each object storing all
attributes as key-value pairs in a map

• subclasses are stored in the superclass table and have the option of
adding key-value pairs to the map that only they process

Discussion (II)

17

• How is inheritance handled?

• There are other options

• including having distinct tables for each superclass and subclass and
using foreign-key relationships to track relationships between tables

• an instance of a subclass would get its values from multiple tables

• These variations are just details, however; you might choose one approach
over another based on your scalability constraints and your knowledge of how
one database performs over another

• The important point is that the object-relational mapping system will hide
the details from you

• You’ll create a new instance and then invoke “save()” and the object gets
picked apart and its values get stored in the appropriate tables

ORM Systems?

• There are many different ORM systems available

• Prominent examples

• CoreData from Apple

• Hibernate from JBoss

• ActiveRecord from Ruby on Rails

18

Apple’s CoreData

19

CoreData has a graphical front-end for specifying the relationships
between objects; it generates databases automatically from this spec

20

Hibernate

The most popular JPA vendor is Hibernate (JBoss)

JPA 1.0 was heavily influenced by Gavin King, the
creator of Hibernate

Much of what exists in JPA is adopted directly from
the Hibernate project

Many key concepts such as mapping syntax and
central session/entity management exist in both

Thursday, March 31, 2011

21

Key Concepts
JPA utilizes annotated Plain Old Java Objects (POJOs)

Define an EntityBean for persistence

@Entity

Define relationships between beans

@OneToOne

@OneToMany

@ManyToOne

@ManyToMany

Thursday, March 31, 2011

22

Key Concepts Cont...
Primitive types and wrappers are mapped by default

String, Long, Integers, Double, etc.

Mappings can be defined on instance vars or on
accessor methods of the POJO

Supports inheritance and embedding

EntityManger is used to manage the state and life cycle
of all entities within a give persistence context

Primary keys are generated and accessed via @Id
annotation

Thursday, March 31, 2011

23

An Example

Thursday, March 31, 2011

24

Office-Employees Example

This was a common interview question at one
of my previous employers

Thursday, March 31, 2011

25

Question:
How could you model an employee management
system using an ORM?

Thursday, March 31, 2011

26

Question Details
Design an application that allows a customer to view all
employees that physically reside in a specific office

Each employee may only reside in one office

Employees must have

First name, last name, phone number, id

Each office must have

Name, postal address, id

Any ORM will do, we’ll use JPA...

In the interview we
would build the

whole application

Here, we’ll just build
out the model tier

Thursday, March 31, 2011

27

The Model

Thursday, March 31, 2011

28

Thursday, March 31, 2011

29

From Model to Code

Our model contains four classes

Office

Employee

DomainObject

PostalAddress

Office and Employee inherit from DomainObject

DomainObject holds on to best practice attributes such
as id, creation date, modified date, version, etc.

Thursday, March 31, 2011

30

From Model to Code Cont...

@Entity must be used to tell JPA which classes are
eligible for persistence

@ManyToOne must be used to tell JPA there is an
aggregation between Office and Employee

We’ll show a use of @Embedded and @Embeddable
for the Office-PostalAddress relationship

As well as inheritance using @MappedSuperclass

Thursday, March 31, 2011

31

DomainObject

Thursday, March 31, 2011

32

This class is not to
be directly persisted

DB generated Id

For optimistic locking

Store as datetime

Call these methods
before creation and

modification

Thursday, March 31, 2011

33

Office

Thursday, March 31, 2011

34

Eligible for
persistence

Embed
PostalAddress in the
same table as Office

Thursday, March 31, 2011

35

PostalAddress

Thursday, March 31, 2011

36

Allow this object to
be embedded by

other objects

State is an Enum
that will be treated

as a String (varchar)

Thursday, March 31, 2011

37

Employee

Thursday, March 31, 2011

38

Defines the many to
one association with

Office

Eligible for
persistence

Thursday, March 31, 2011

39

Explanation
@Embeddable and @Embedded

Allows for the attributes of an embedded class to be
stored in the same table as the embedding class

@Enumerated

Allows for the value of an Enum to be stored in a
column in the class’s database table

@MappedSuperclass

Allows for all attributes of the superclass to be
utilized by the subclasses

Duplicates all superclass attributes on subclass
tables

Thursday, March 31, 2011

40

The Database

Thursday, March 31, 2011

41

The Database
JPA is capable of generating the underlying database
for the developer

Most aspects of the generation are available for
customization

The defaults are generally good enough

Any @Entity causes the generation of a database
table. Our generated tables are:

Office table

Employee table

Thursday, March 31, 2011

42

Office Table
Field Type

id bigint(20)
createDate datetime

modifiedDate datetime
version int(11)
name varchar(255)

addressOne varchar(255)
addressTwo varchar(255)

city varchar(255)
state varchar(255)

zipCode varchar(255)

Thursday, March 31, 2011

43

Employee Table
Field Type

id bigint(20)

createDate datetime

modifiedDate datetime

version int(11)

firstName varchar(255)

lastName varchar(255)

location varchar(255)

phoneNumber varchar(255)

office_id bigint(20)

FK to
Office

Thursday, March 31, 2011

44

Take Aways

Thursday, March 31, 2011

45

Take Aways

JPA is a specification that a developer can code to in
order to easily leverage ORM technologies

There are a wide variety of vendors that implement
the specification

Coding to the spec allows the developer to be
flexible in their choice of vendor implementations
with limited ripple throughout the codebase

JPA greatly simplifies persistence of POJOs through
a small set of easily utilized annotations

Thursday, March 31, 2011

46

ActiveRecord

• ActiveRecord is the Object-Relational Mapping system that is used by the
Ruby on Rails web application framework

• It takes advantage of “convention over configuration” to provide
reasonable defaults that will meet most developers needs

• For instance, if you create a table in your database called dogs and add
a Ruby class called Dog to your Rails app, ActiveRecord can figure out
that the two are connected

• It will then provide methods for searching the table…

• … and returning instances of the Dog class for manipulation and
display by other parts of Ruby on Rails

• It also autogenerates ids for each instance and will even generate
attributes that will track, for instance, when a row was last updated

ActiveRecord Features (I)

• The code in a Ruby class that makes use of ActiveRecord is often quite
simple; for instance, many of them look like this

• class Order < ActiveRecord::Base

• end

• A name and a subclass relationship and that’s it

• Note: ActiveRecord::Base is ActiveRecords key class and it (by default)
indicates when a class will be associated with a table in a database

• Class Order will have an associated table called orders

• The attributes associated with Order are then inferred by ActiveRecord at
run-time; it adds attributes, getters, and setters to an Order object
dynamically based on the information it finds in the associated table

47

ActiveRecord Features (II)

• ActiveRecord supports three types of relationships

• One-to-One: declared via has_one and belongs_to

• One-to-Many: declared via has_many and belongs_to

• Many-to-Many: declared via has_and_belongs_to_many

• These declarations go in the class definition and reference the other class
that participates in the relationship via a Ruby symbol

48

ActiveRecord Features (III)

• class Order < ActiveRecord::Base

• has_many :line_items

• end

• class LineItem < ActiveRecord::Base

• belongs_to: order

• end

• belongs_to indicates the presence of a foreign key; in this example,
line_items will contain an auto-generated foreign key to the orders table
referencing the particular order that contains the line item

• the full set of line_items associated with an order is found by scanning
the line_items table

49

Support for CRUD (I)

• Creating a new instance of an object is as simple as

• my_order = Order.new

• order.name = “Ken Anderson”

• order.email = “kena@cs.colorado.edu”

• order.save

• Note: no need to set “order.id”; it is auto-generated

• Finding instances can be located via methods find (takes an id or a set of ids
and returns object instances) or where (locates objects based on att values)

• can autogenerate search routines via the find_by_<attname>

• find_by_name and find_by_name_and_phonenumber

50

mailto:kena@cs.colorado.edu
mailto:kena@cs.colorado.edu

Support for CRUD (II)

• Support for update is as simple as finding an object, changing its attribute
value, and invoking save

• my_order = Order.find(5)

• my_order.name = “Max Anderson”

• my_order.save

• For deleting objects, two methods can be used: delete/delete_all and destroy/
destroy_all

• The former of each pair takes an id or a set of ids; the latter of each pair
takes a query that first finds matching objects and then invokes either delete
or destroy

• destroy ensures that constraints are followed during deletion; delete
bypasses those constraints

51

Support for Transactions

• ActiveRecord has support for transactions (as long as the underlying database
supports transactions!)

• This allows you to ensure that changes to model objects that need to be
atomic are handled successfully, otherwise partial changes are rolled back
and an exception is thrown

• The transaction is handled by a class method on a model object

• account1 = Account.find(1);

• account2 = Account.find(2)

• Account.transaction do

• account1.withdraw(100); account2.deposit(100);

• end

52

This transaction
will either transfer
the money
successfully or
leave both objects
unchanged

Simple Example (I)

• Let’s take a look at the basic workflow of ORM in Ruby on Rails using the
legendary “depot” example that has been featured in four editions of the
following book

• Agile Web Development with Rails by Sam Ruby (and others)

• <http://www.pragprog.com/titles/rails4/agile-web-development-with-rails>

• I won’t show the entire example (which eventually shows all the ins and outs
of using ActiveRecord, migrations, rake, etc. in Ruby on Rails

• In this example, we’ll create the foundation for an e-commerce site in Rails
centered around the model object called “Product”

• Note: I’m using Rails 3.1.3 and the an old version of Ruby 1.9.2 to run these
examples

53

http://www.pragprog.com/titles/rails4/agile-web-development-with-rails
http://www.pragprog.com/titles/rails4/agile-web-development-with-rails

Simple Example (II)

• Create a Rails application

• rails new depot

• This command creates a new Rails 3.0 application called depot; now type:

• cd depot; rails generate scaffold Product title:string description:text
image_url:string price:decimal

• This tells rails to generate the classes needed to have a model object called
Product with attributes title, description, image_url and price

• It creates a file called <date+id>_create_products.rb in the db/migrate
directory; this file is known in Rails as a “migration” as it contains
instructions to create this model object in an sqlite3 database and can be
used to apply or rollback changes to the database structure

54

Simple Example (III)

• That file looks (kind of) like this; (below is the file generated by Rails 3.0.7)

55

class CreateProducts < ActiveRecord::Migration
 def self.up
 create_table :products do |t|
 t.string :title
 t.text :description
 t.string :image_url
 t.decimal :price

 t.timestamps
 end
 end

 def self.down
 drop_table :products
 end
end

In code, this says “If we are
applying this migration,
then create the table
products; if we are rolling
back this migration, then
drop (delete) the products
table

Simple Example (IV)

• On the line that deals with defining the price in the migration, change it to
read:

• t.decimal :price, :precision => 8, :scale => 2

• Now, we ask Rails to apply this migration using a tool called rake

• rake will discover that we have no database and will, as a result,

• create one, and

• apply the migration (which will, in turn, create the products table)

• Type: “rake db:migrate” in the depot directory and rake will create the
database

• This creates the file “development.sqlite3” in depot/db

56

Simple Example (V)

• How did Rails (rake) know to create this file?

• Rails is designed around a concept called “convention over configuration”

• when we created the depot application, Rails configured the app with a
bunch of defaults; relevant to our situation here, there are defaults that
say:

• use sqlite3 as a database if not told otherwise

• start in “development” mode (rather than “production” or “test”)

• store the database in the db directory

• etc.

• sqlite3 is a flat file database; you can use a hex editor to confirm that the
newly created file contains a products table as specified by our migration

57

Simple Example (VI)

• And, that’s it. We are ready to test our web app

• Execute the command: “rails server” and use a web browser to visit the page:
http://localhost:3000/products

• You will be presented with a web page that allows you to create, view, edit, and
delete instances of the Product class!

• Now, if you’ve never used Rails before, you might be saying

• “Where did all this functionality come from?”

• Well, when we created the database migration a few slides ago, we used the
command

• “rails generate scaffold Product…”

• The keyword here is “scaffold”; this tells Rails to auto-generate controllers and
views that can create, read, update and delete the Product class, all for “free”

58

http://localhost:3000/products
http://localhost:3000/products

Simple Example (VII)

• If you check the sqlite3 file with a hex editor, you can again confirm that the
database is being populated with instances of the products that you specify via
the web interface

• Take a look at

• depot/app/controllers/products_controller.rb

• depot/app/views/products/index.html.erb

• to get a feel for how Rails is doing all this

• In that auto-generated code, you will see references to

• Product.new, Product.find, Product.save

• all examples of ActiveRecord in action!

• You can see more advanced uses of ActiveRecord by buying the book!

59

Wrap Up

• Object-Relational Mapping Systems allow OO systems to take advantage of
the scalability and efficiency benefits provided by modern persistence
mechanisms

• They provide services for “breaking apart” objects and storing them inside
of tables or key-value stores and for “hydrating” objects stored in a
persistence mechanism

• bringing them back to object form, allowing getters and methods to be
invoked, polymorphism to occur, setters to be written, etc.

• all the while ensuring that proper database code is generated and
invoked automatically to ensure that the current state of the object
graph is always maintained

• We saw examples of CoreData, Hibernate and ActiveRecord

60

