
© Kenneth M. Anderson, 2012

Creational Patterns

CSCI 4448/5448: Object-Oriented Analysis & Design
Lecture 26 — 11/29/2012

1

© Kenneth M. Anderson, 2012

Goals of the Lecture

• Cover material from Chapters 20-22 of the Textbook

• Lessons from Design Patterns: Factories

• Singleton Pattern

• Object Pool Pattern

• Also discuss

• Builder Pattern

• Lazy Instantiation

2

© Kenneth M. Anderson, 2012

Pattern Classification

• The Gang of Four classified patterns in three ways

• The behavioral patterns are used to manage variation in behaviors (think
Strategy pattern)

• The structural patterns are useful to integrate existing code into new
object-oriented designs (think Bridge)

• The creational patterns are used to create objects

• Abstract Factory, Builder, Factory Method, Prototype & Singleton

3

© Kenneth M. Anderson, 2012

Factories & Their Role in OO Design

• It is important to manage the creation of objects

• Code that mixes object creation with the use of objects can become
quickly non-cohesive

• A system may have to deal with a variety of different contexts

• with each context requiring a different set of objects

• In design patterns, the context determines which concrete
implementations need to be present

4

© Kenneth M. Anderson, 2012

Factories & Their Role in OO Design

• The code to determine the current context, and thus which objects to
instantiate, can become complex

• with many different conditional statements

• If you mix this type of code with the use of the instantiated objects, your code
becomes cluttered

• often the use scenarios can happen in a few lines of code

• if combined with creational code, the operational code gets buried
behind the creational code

5

© Kenneth M. Anderson, 2012

Factories provide Cohesion

• The use of factories can address these issues

• The conditional code can be hidden within them

• pass in the parameters associated with the current context

• and get back the objects you need for the situation

• Then use those objects to get your work done

• Factories concern themselves just with creation, letting your code focus on
other things

6

© Kenneth M. Anderson, 2012

The Object Creation/Management Rule

• This discussion brings us to this general design rule

• An object should either create/manage a set of objects OR it should use
other objects

• it should never do both

7

© Kenneth M. Anderson, 2012

Discussion (I)

• This rule is a guideline not an absolute

• The latter is too difficult; think of iOS view controllers

• They exist to create a view and then respond to requests related to that
view (which may involve making queries on the view)

• This violates the rule, strictly speaking, as it both creates AND uses
its associated view

8

© Kenneth M. Anderson, 2012

Discussion (II)

• But as a guideline, the rule is useful

• Look for ways to separate out the creation of objects from the code that
makes use of those objects

• encapsulate the creation process and you can change it as needed
without impacting the code that then uses those objects

• The book demonstrates the advantages of the rule with the following two
diagrams

9

© Kenneth M. Anderson, 2012

The perspective of a client object

10

Client Object Interface or
Abstract Class

Concrete
Class A

Concrete
Class B

Client knows
about this class

Client knows nothing
about these classes

The client is completely shielded from the concrete classes and only
changes if the abstract interface changes

© Kenneth M. Anderson, 2012

The perspective of a factory object

11

Factory Object Interface or
Abstract Class

Concrete
Class A

Concrete
Class B

Factory knows the
name of this class

but not how to use it

Factory knows how and
when to create instances

of these classes

«references»

«creates»

«creates»

The factory knows nothing about how to use the abstract interface; it just
creates the objects that implement it

© Kenneth M. Anderson, 2012

Factories help to limit change

12

• If a change request relates to the creation of an object, the change will likely
occur in a factory

• all client code will remain unaffected

• If a change request does not relate to the creation of objects, the change will
likely occur in the use of an object or the features it provides

• your factories can be ignored as you work to implement the change

© Kenneth M. Anderson, 2012

Abstract Factory and Factory Method

• We’ve already seen several factory pattern examples

• Factory Method: Pizza and Pizza Store example

• Have client code use an abstract method that returns a needed
instance of an interface

• Have a subclass implementation determine the concrete
implementation that is returned

• Abstract Factory: Pizza Ingredients Example

• Pattern that creates groups of related objects

13

© Kenneth M. Anderson, 2012

Singleton Pattern

• Used to ensure that only one instance of a particular class ever gets created
and that there is just one (global) way to gain access to that instance

• Let’s derive this pattern by starting with a class that has no restrictions on
who can create it

14

© Kenneth M. Anderson, 2012

Deriving Singleton (I)

• public class Ball {

• private String color;

• public Ball(String color) { this.color = color; }

• public void bounce() { System.out.println(“boing!”); }

• }

• Ball b1 = new Ball(“red”);

• Ball b2 = new Ball(“green”);

• b1.bounce();

• b2.bounce();

15

© Kenneth M. Anderson, 2012

Problem: Universal Instantiation

• As long as a client object “knows about” the name of the class Ball, it can
create instances of Ball

• Ball b1 = new Ball(“orange”);

• This is because the constructor is public.

• We can stop unauthorized creation of Ball instances by making the
constructor private

16

© Kenneth M. Anderson, 2012

Deriving Singleton (II)

• public class Ball {

• private String color;

• private Ball(String color) { this.color = color; }

• public void bounce() { System.out.println(“boing!”); }

• }

• // next line now impossible by any method outside of Ball

• Ball b2 = new Ball(“red”);

17

© Kenneth M. Anderson, 2012

Problem: No Point of Access!

• Now that the constructor is private, no class can gain access to instances of
Ball

• But our requirements were that there would be at least one way to get
access to an instance of Ball

• We need a method to return an instance of Ball

• But since there is no way to get access to an instance of Ball, the method
can NOT be an instance method

• This means it needs to be a class method, aka a static method

18

© Kenneth M. Anderson, 2012

Deriving Singleton (III)

• public class Ball {

• private String color;

• private Ball(String color) { this.color = color; }

• public void bounce() { System.out.println(“boing!”); }

• public static Ball getInstance(String color) {

• return new Ball(color);

• }

• }

19

© Kenneth M. Anderson, 2012

Problem: Back to Universal Instantiation

• We are back to the problem where any client can create an instance of Ball;
instead of saying this:

• Ball b1 = new Ball(“blue”);

• they just say

• Ball b1 = Ball.getInstance(“blue”);

• Need to ensure only one instance is ever created

• Need a static variable to store that instance

• No instance variables are available in static methods

20

© Kenneth M. Anderson, 2012

Deriving Singleton (IV)

• public class Ball {

• private static Ball ball;

• private String color;

• private Ball(String color) { this.color = color; }

• public void bounce() { System.out.println(“boing!”); }

• public static Ball getInstance(String color) {

• return ball;

• }

• }

21

© Kenneth M. Anderson, 2012

Problem: No instance!

• Now the getInstance() method returns null each time it is called

• Need to check the static variable to see if it is null

• If so, create an instance

• Otherwise return the single instance

22

© Kenneth M. Anderson, 2012

Deriving Singleton (V)

• public class Ball {

• private static Ball ball;

• private String color;

• private Ball(String color) { this.color = color; }

• public void bounce() { System.out.println(“boing!”); }

• public static Ball getInstance(String color) {

• if (ball == null) { ball = new Ball(color); }

• return ball;

• }

• }

23

© Kenneth M. Anderson, 2012

Problem: First Parameter Wins

• The code on the previous slide shows the Singleton pattern

• private constructor

• private static instance variable to store the single instance

• public static method to gain access to that instance

• this method creates object if needed; returns it

• But this code ignores the fact that a parameter is being passed in; so if a
“red” ball is created all subsequent requests for a “green” ball are ignored

24

© Kenneth M. Anderson, 2012

Solution: Use a Map

• The solution to the final problem is to change the private static instance
variable to a Map

• private Map<String, Ball> toybox = new HashMap…

• Then check if the map contains an instance for a given value of the parameter

• this ensures that only one ball of a given color is ever created

• this is an acceptable variation of the Singleton pattern

• indeed, it is VERY similar to the Flyweight pattern

• DEMO

25

© Kenneth M. Anderson, 2012

Singleton Pattern: Structure

static getInstance() : Singleton
private Singleton()

static my_instance : Singleton
Singleton Singleton involves only a single class (not

typically called Singleton). That class is a
full-fledged class with other attributes
and methods (not shown)

The class has a static variable that points
at a single instance of the class.

The class has a private constructor (to
prevent other code from instantiating the
class) and a static method that provides
access to the single instance

26

© Kenneth M. Anderson, 2012

World’s Smallest Java-based Singleton Class

public class Singleton {1

2

 private static Singleton uniqueInstance;3

4

 private Singleton() {}5

6

 public static Singleton getInstance() {7

 if (uniqueInstance == null) {8

 uniqueInstance = new Singleton();9

 }10

 return uniqueInstance;11

 }12

}13

14

Meets Requirements: static var, static method, private constructor

27

© Kenneth M. Anderson, 2012

Thread Safe?

• The Java code just shown is not thread safe

• This means that it is possible for two threads to attempt to create the
singleton for the first time simultaneously

• If both threads check to see if the static variable is empty at the same
time, they will both proceed to creating an instance and you will end up
with two instances of the singleton object (not good!)

• Example Next Slide

28

© Kenneth M. Anderson, 2012

Program to Test Thread Safety
public class Creator implements Runnable {1

2

 private int id;3

4

 public Creator(int id) {5

 this.id = id;6

 }7

8

 public void run() {9

 try {10

 Thread.sleep(200L);11

 } catch (Exception e) {12

 }13

 Singleton s = Singleton.getInstance();14

 System.out.println("s" + id + " = " + s);15

 }16

17

 public static void main(String[] args) {18

 Thread[] creators = new Thread[10];19

 for (int i = 0; i < 10; i++) {20

 creators[i] = new Thread(new Creator(i));21

 }22

 for (int i = 0; i < 10; i++) {23

 creators[i].start();24

 }25

 }26

27

}28

29

Creates a “runnable” object
that can be assigned to a
thread.

When its run, its sleeps for a
short time, gets an instance of
the Singleton, and prints out
its object id.

The main routine, creates ten
runnable objects, assigns
them to ten threads and starts
each of the threads

29

© Kenneth M. Anderson, 2012

Output for Non Thread-Safe Singleton Code

• s9 = Singleton@45d068

• s8 = Singleton@45d068

• s3 = Singleton@45d068

• s6 = Singleton@45d068

• s1 = Singleton@45d068

• s0 = Singleton@ab50cd

• s5 = Singleton@45d068

• s4 = Singleton@45d068

• s7 = Singleton@45d068

Whoops!

Thread 0 created an instance of the
Singleton class at memory location
ab50cd at the same time that another
thread (we don’t know which one)
created an additional instance of
Singleton at memory location 45d068!

30

© Kenneth M. Anderson, 2012

How to Fix?

public class Singleton {1

2

 private static Singleton uniqueInstance;3

4

 private Singleton() {}5

6

 public static synchronized Singleton getInstance() {7

 if (uniqueInstance == null) {8

 uniqueInstance = new Singleton();9

 }10

 return uniqueInstance;11

 }12

13

}14

15

In Java, the easiest fix is to add the synchronized keyword to the
getInstance() method.

31

© Kenneth M. Anderson, 2012

Objective-C Singleton

32

• Add a class method to your class that looks like this

• + (MyClass *)sharedInstance {

• static MyClass *sharedInstance = nil;

• static dispatch_once_t onceToken;

• dispatch_once(&onceToken, ^{

• sharedInstance = [[MyClass alloc] init];

• // Do any other initialisation stuff here

• });

• return sharedInstance;

• }

• Make calling code use sharedInstance by convention

© Kenneth M. Anderson, 2012

Object Pool

• A variant of the Singleton Pattern is known as the Object Pool pattern

• This allows some instances (x) of an object to be created up to some
maximum number (m)

• where 1 < x ≤ m

• In this case, each instance provides a reusable service (typically tied to
system resources such as network connections, printers, etc.) and clients
don’t care which instance they receive

33

© Kenneth M. Anderson, 2012

Object Pool Structure Diagram

34

+ acquireReusable() : Reusable
+ releaseReusable(Reusable)

- Pool()
+ getInstance() : Pool

Pool

Client

Reusable

*

© Kenneth M. Anderson, 2012

Common Use: Thread Pool

35

• One place in which the Object Pool pattern is used frequently is in
multithreaded applications

• where each thread is a “computation resource” that can be used to
execute one or more tasks associated with the system

• when a task needs to be done, a thread is pulled out of the pool and
assigned the task; it executes the task and is then released back to the
pool to (eventually) work on other tasks

© Kenneth M. Anderson, 2012

Examples (1)

• First, a “homegrown” example

• ThreadPool implemented as a blocking queue of Thread subclasses called
Processors

• Goal is to calculate the number of primes between 1 and 20M
(20,000,000).

• Producer creates tasks to calculate primes between a subset of numbers,
say 1 to 250,000; 250,001 to …

• Processor calculates in separate thread

• Consumer joins with Processors and merges the results

36

© Kenneth M. Anderson, 2012

Examples (2)

• An example that makes use of a thread pool provided by the Java
Concurrency API (example taken from this excellent book)

• The class that implements the object pool pattern is known as an
ExecutorService

• You pass it instances of a class called Callable

• It returns instances of a class called Future

• You hold onto the Future object while Callable executes in the
background (using threads managed by the Executor Service)

• then retrieve Callable’s result from the Future object

37

http://www.pragprog.com/titles/vspcon/programming-concurrency-on-the-jvm
http://www.pragprog.com/titles/vspcon/programming-concurrency-on-the-jvm

© Kenneth M. Anderson, 2012

Builder (I)

• We encountered the Builder pattern earlier this semester during our Android
lectures

• There are so many ways that an AlertDialog can be customized

• that Android offers a class called AlertDialog.Builder

• that makes the customization process easier

38

© Kenneth M. Anderson, 2012

Builder (II)

• Here’s an example of using AlertDialog.Builder

• AlertDialog.Builder builder = new
AlertDialog.Builder(this);

• builder.setMessage("Do you want to cancel the
download?").setTitle("Cancel Download?");

• builder.setNegativeButton("No!", ...);

• builder.setPositiveButton("YES!", ...);

• return builder.create();

• The create() method returns an instance of AlertDialog configured to match the
results of the calls on the builder object

• As you can see, this pattern can greatly simplify the creation/configuration
process of complex objects

39

Note the ability
to chain calls to
builder; each
method on
builder simply
returns the
builder object

© Kenneth M. Anderson, 2012

Builder (III)

• The Builder pattern comes from the Gang of Four book

• It’s intent is

• Separate the construction of a complex object from its representation so
that the same construction process can create different representations

• Use the Builder pattern when

• the algorithm for creating a complex object should be independent of the
parts that make up the object and how they’re assembled

• the construction process must allow different representations for the
object that’s constructed

40

© Kenneth M. Anderson, 2012

Builder (IV)

• The structure diagram for Builder identifies the following abstract roles

41

Construct()
Director

BuildPart()
Builder

BuildPart()
GetResult() : Product

ConcreteBuilder

Product

«created by»

Client

A Director interacts with a
Builder to guide the
creation of a Product. The
Client creates the Director
and a specific Builder and
then asks the Director to
create the Product. The
Client retrieves the Product
directly from the
ConcreteBuilder

© Kenneth M. Anderson, 2012

Builder (V)

• How does this map back to the Android example?

• AlertDialog.Builder is a ConcreteBuilder used to create/configure instances
of AlertDialog (the Product)

• Our Main activity played the roles of Client and Director

• It created an instance of the Builder (Client responsibility)

• It configured the Builder (Director responsibility)

• It retrieved and used the Product (Client responsibility)

• This emphasizes the point I’ve been making for most of the semester

• Design Patterns outline the shape of a solution; they can be
implemented in multiple ways

42

© Kenneth M. Anderson, 2012

Lazy Instantiation (I)

• Lazy Instantiation is NOT a design pattern

• but rather a software engineering best practice

• especially in the context of mobile apps running with limited memory

• The best practice can be summarized as:

• always access instance variables via their getter method

• never instantiate an instance variable until it is accessed

43

© Kenneth M. Anderson, 2012

Lazy Instantiation (II)

• To implement, your calling code would look like this

• myObject.getEmployees().append(new Employee());

• Your getter method would look similar to

• public List getEmployees() {

• if (_employees == null) {

• _employees = new LinkedList<Employee>();

• }

• return _employees;

• }

44

© Kenneth M. Anderson, 2012

Lazy Instantiation (III)

• Lazy Instantiation can be used in all programming languages

• It shouldn’t be applied blindly however

• Use it when your dealing with a class that might have thousands of
instances at run-time but not all of the instances are guaranteed to be
accessed

• Such a situation might occur when searching a large number of
objects

• Don’t use it on classes that have only a handful of instances generated
each time the program is run and all of those instances are guaranteed
to be used each time

45

© Kenneth M. Anderson, 2012

Wrapping Up

• Looked at

• the use of Factories in OO Design

• the Singleton and Object Pool Design Patterns

• saw example of thread-safe singletons

• saw use of thread pools in java.util.concurrent

• the Builder Design Pattern

• the concept of Lazy Instantiation to minimize the amount of memory
allocated at run-time

46

© Kenneth M. Anderson, 2012

Coming Up Next

• Lecture 27: Patterns of Patterns; Textbook Wrap-Up

• Lectures 28, 29, 30: Some combination of

• Refactoring; Test Driven Design

• Dependency Injection

• Object-Relational Mapping

47

