
© Kenneth M. Anderson, 2012

More Design Patterns

CSCI 4448/5448: Object-Oriented Analysis & Design
Lecture 25 — 11/27/2012

1

© Kenneth M. Anderson, 2012

Goals of the Lecture

• Cover the material in Chapters 18 & 19 of our textbook

• Observer

• Template Method

• And, include two bonus patterns

• State

• Flyweight

2

© Kenneth M. Anderson, 2012

Observer Pattern

• Don’t miss out when something interesting (in your system) happens!

• The observer pattern allows objects to keep other objects informed about
events occurring within a software system (or across multiple systems)

• It’s dynamic in that an object can choose to receive or not receive
notifications at run-time

• Observer happens to be one of the most heavily used patterns in the Java
Development Kit

• and indeed is present in many frameworks

3

© Kenneth M. Anderson, 2012

Weather Monitoring

Weather
Station

Temp
Sensor

Humidity
Sensor

Pressure
Sensor

Weather
Data

Object

TabTabTab

Document Window

pull
data

display
data

provided what we implement

We need to pull information from a weather station and then generate
“current conditions, weather stats, and a weather forecast”.

4

© Kenneth M. Anderson, 2012

WeatherData Skeleton

getTemperature()
getHumidity()
getPressure()
measurementsChanged()

WeatherData We receive a partial implementation of the
WeatherData class from our client.

They provide three getter methods for the sensor
values and an empty measurementsChanged()
method that is guaranteed to be called whenever
a sensor provides a new value

We need to pass these values to our three
displays… simple!

5

© Kenneth M. Anderson, 2012

First pass at measurementsChanged

...1

2

public void measurementsChanged() {3

4

 float temp = getTemperature();5

 float humidity = getHumidity();6

 float pressure = getPressure();7

 8

 currentConditionsDisplay.update(temp, humidity, pressure);9

 statisticsDisplay.update(temp, humidity, pressure);10

 forecastDisplay.update(temp, humidity, pressure);11

12

}13

14

...15

16

Problems?

1. The number and type of displays may vary. These three
displays are hard coded with no easy way to update them.

2. Coding to implementations, not an interface! Each
implementation has adopted the same interface, so this will
make translation easy!

6

© Kenneth M. Anderson, 2012

Observer Pattern

• This situation can benefit from use of the observer pattern

• This pattern is similar to subscribing to a newspaper

• A newspaper comes into existence and starts publishing editions

• You become interested in the newspaper and subscribe to it

• Any time an edition becomes available, you are notified (by the fact that
it is delivered to you)

• When you don’t want the paper anymore, you unsubscribe

• The newspaper’s current set of subscribers can change at any time

• Observer is just like this but we call the publisher the “subject” and we
refer to subscribers as “observers”

7

© Kenneth M. Anderson, 2012

Observer in Action (I)

Observers

Subject

Observer
1

Observer
2

Observer
3

Subject maintains a list of observers
8

© Kenneth M. Anderson, 2012

Observer in Action (II)

Observers

Subject

Observer
1

Observer
2

Observer
3

If the Subject changes, it notifies its observers

9

© Kenneth M. Anderson, 2012

Observer in Action (III)

Observers

Subject

Observer
1

Observer
2

Observer
3

If needed, an observer may query its subject for more information

10

© Kenneth M. Anderson, 2012

Observer In Action (IV)

Observers

Subject

Observer
1

Observer
2

Observer
3

At any point, an observer may join or leave the set of observers

Observer
4

11

© Kenneth M. Anderson, 2012

Observer Definition and Structure

• The Observer Pattern defines a one-to-many dependency between a set of
objects, such that when one object (the subject) changes, all of its
dependents (observers) are notified and updated automatically

registerObserver()
removeObserver()
notifyObservers()

Subject
«Interface»

update()

Observer
«Interface»

observers

*

getState()
setState()

state
ConcreteSubject

Observer
subject

12

© Kenneth M. Anderson, 2012

Observer Benefits

• Observer affords a loosely coupled interaction between subject and observer

• This means they can interact with very little knowledge about each other

• Consider

• The subject only knows that observers implement the Observer interface

• We can add/remove observers of any type at any time

• We never have to modify subject to add a new type of observer

• We can reuse subjects and observers in other contexts

• The interfaces plug-and-play anywhere observer is used

• Observers may have to know about the ConcreteSubject class if it provides many
different state-related methods

• Otherwise, data can be passed to observers via the update() method

13

© Kenneth M. Anderson, 2012

Demonstration (I)

• Roll Your Own Observer

• Using java.util.Observable and java.util.Observer

• Observable is a CLASS, a subject has to subclass it to manage observers

• Observer is an interface with one defined method: update(subject, data)

• To notify observers: call setChanged(), then notifyObservers(data)

• Observer in Swing

• Listener framework is just another name for the Observer pattern

• Observer in Cocoa

• Notifications (system defined as well as application defined)

14

© Kenneth M. Anderson, 2012

Demonstration (II)

• The code for registering for notifications in iOS and OS X looks like this:

• [[NSNotificationCenter defaultCenter]

• addObserver:self

• selector:@selector(orientationChanged:)

• name:UIDeviceOrientationDidChangeNotification

• object:nil];

• You register with the “default notification center” that is maintained by the
operating system itself. You state who the observer is, what event you are
interested in, what method should be called when the event occurs, and
whether you are only interested if the event occurs on a particular object

15

© Kenneth M. Anderson, 2012

Template Method: Definition

• The Template Method Pattern defines the skeleton of an algorithm in a method,
deferring some steps to subclasses. Template Method lets subclasses redefine
certain steps of an algorithm without changing the algorithm’s structure

• Template Method defines the steps of an algorithm and allows subclasses
to provide the implementation for one or more steps

• Makes the algorithm abstract

• Each step of the algorithm is represented by a method

• Encapsulates the details of most steps

• Steps (methods) handled by subclasses are declared abstract

• Shared steps (concrete methods) are placed in the same class that
has the template method, allowing for code re-use among the various
subclasses

16

© Kenneth M. Anderson, 2012

Template Method: Structure

templateMethod()
primitiveOperation1()
primitiveOperation2()

AbstractClass

primitiveOperation1()
primitiveOperation2()

ConcreteClass

primitiveOperation1();
primitiveOperation2()

Very simple pattern…

...but also very powerful

Used typically in application frameworks, e.g.
Cocoa and .Net

primitiveOperation1() and primitiveOperation2()
are sometimes referred to as hook methods as
they allow subclasses to hook their behavior
into the service provided by AbstractClass

17

© Kenneth M. Anderson, 2012

Example: Tea and Coffee

• Consider another Starbuzz
example in which we
consider the recipes for
making coffee and tea in a
barista’s training guide

• Coffee

• Boil water

• Brew coffee in boiling
water

• Pour coffee in cup

• Add sugar and milk

• Tea

• Boil water

• Steep tea in boiling
water

• Pour tea in cup

• Add lemon

18

© Kenneth M. Anderson, 2012

Coffee Implementation
public class Coffee {1

 2

 void prepareRecipe() {3

 boilWater();4

 brewCoffeeGrinds();5

 pourInCup();6

 addSugarAndMilk();7

 }8

 9

 public void boilWater() {10

 System.out.println("Boiling water");11

 }12

 13

 public void brewCoffeeGrinds() {14

 System.out.println("Dripping Coffee through filter");15

 }16

 17

 public void pourInCup() {18

 System.out.println("Pouring into cup");19

 }20

 21

 public void addSugarAndMilk() {22

 System.out.println("Adding Sugar and Milk");23

 }24

}25

26

19

© Kenneth M. Anderson, 2012

Tea Implementation
public class Tea {1

 2

 void prepareRecipe() {3

 boilWater();4

 steepTeaBag();5

 pourInCup();6

 addLemon();7

 }8

 9

 public void boilWater() {10

 System.out.println("Boiling water");11

 }12

 13

 public void steepTeaBag() {14

 System.out.println("Steeping the tea");15

 }16

 17

 public void addLemon() {18

 System.out.println("Adding Lemon");19

 }20

 21

 public void pourInCup() {22

 System.out.println("Pouring into cup");23

 }24

}25

26 20

© Kenneth M. Anderson, 2012

Code Duplication!

• We have code duplication occurring in these two classes

• boilWater() and pourInCup() are exactly the same

• Lets get rid of the duplication

prepareRecipe()
boilWater()
pourInCup()

CaffeineBeverage

prepareRecipe()
brewCoffeeGrinds()
addSugarAndMilk()

Coffee
prepareRecipe()
steepTea()
addLemon()

Tea

21

© Kenneth M. Anderson, 2012

Similar algorithms

• The structure of the algorithms in prepareRecipe() is similar for Tea and Coffee

• We can improve our code further by making the code in prepareRecipe()
more abstract

• brewCoffeeGrinds() and steepTea() ⇒ brew()

• addSugarAndMilk() and addLemon() ⇒ addCondiments()

• Excellent, now all we need to do is specify this structure in
CaffeineBeverage.prepareRecipe() and make it such that subclasses can’t
change the structure

• How do we do that?

• Answer: By convention OR by using the keyword “final” in languages
that support it

22

© Kenneth M. Anderson, 2012

CaffeineBeverage Implementation

public abstract class CaffeineBeverage {1

 2

 final void prepareRecipe() {3

 boilWater();4

 brew();5

 pourInCup();6

 addCondiments();7

 }8

 9

 abstract void brew();10

 11

 abstract void addCondiments();12

 13

 void boilWater() {14

 System.out.println("Boiling water");15

 }16

 17

 void pourInCup() {18

 System.out.println("Pouring into cup");19

 }20

}21

22

Note: use of final
keyword for
prepareReceipe()

brew() and
addCondiments() are
abstract and must be
supplied by subclasses

boilWater() and
pourInCup() are specified
and shared across all
subclasses

23

© Kenneth M. Anderson, 2012

Coffee And Tea Implementations

public class Coffee extends CaffeineBeverage {1

 public void brew() {2

 System.out.println("Dripping Coffee through filter");3

 }4

 public void addCondiments() {5

 System.out.println("Adding Sugar and Milk");6

 }7

}8

9

public class Tea extends CaffeineBeverage {10

 public void brew() {11

 System.out.println("Steeping the tea");12

 }13

 public void addCondiments() {14

 System.out.println("Adding Lemon");15

 }16

}17

18
Nice and Simple!

24

© Kenneth M. Anderson, 2012

What have we done?

• Took two separate classes with separate but similar algorithms

• Noticed duplication and eliminated it by introducing a superclass

• Made steps of algorithm more abstract and specified its structure in the
superclass

• Thereby eliminating another “implicit” duplication between the two classes

• Revised subclasses to implement the abstract (unspecified) portions of the
algorithm… in a way that made sense for them

25

© Kenneth M. Anderson, 2012

Comparison: Template Method (TM) vs. No TM

• No Template Method

• Coffee and Tea each have own
copy of algorithm

• Code is duplicated across both
classes

• A change in the algorithm would
result in a change in both classes

• Not easy to add new caffeine
beverage

• Knowledge of algorithm distributed
over multiple classes

• Template Method

• CaffeineBeverage has the algorithm
and protects it

• CaffeineBeverage shares common
code with all subclasses

• A change in the algorithm likely
impacts only CaffeineBeverage

• New caffeine beverages can easily
be plugged in

• CaffeineBeverage centralizes
knowledge of the algorithm;
subclasses plug in missing pieces

26

© Kenneth M. Anderson, 2012

Adding a Hook to CaffeineBeverage
public abstract class CaffeineBeverageWithHook {1

 2

 void prepareRecipe() {3

 boilWater();4

 brew();5

 pourInCup();6

 if (customerWantsCondiments()) {7

 addCondiments();8

 }9

 }10

 11

 abstract void brew();12

 13

 abstract void addCondiments();14

 15

 void boilWater() {16

 System.out.println("Boiling water");17

 }18

 19

 void pourInCup() {20

 System.out.println("Pouring into cup");21

 }22

 23

 boolean customerWantsCondiments() {24

 return true;25

 }26

}27

28

prepareRecipe() altered to have
a hook method:
customerWantsCondiments()

This method provides a method
body that subclasses can
override

To make the distinction between
hook and non-hook methods
more clear, you can add the
“final” keyword to all concrete
methods that you don’t want
subclasses to touch 27

© Kenneth M. Anderson, 2012

import java.io.*;1

2

public class CoffeeWithHook extends CaffeineBeverageWithHook {3

 4

 public void brew() {5

 System.out.println("Dripping Coffee through filter");6

 }7

 8

 public void addCondiments() {9

 System.out.println("Adding Sugar and Milk");10

 }11

 12

 public boolean customerWantsCondiments() {13

14

 String answer = getUserInput();15

16

 if (answer.toLowerCase().startsWith("y")) {17

 return true;18

 } else {19

 return false;20

 }21

 }22

 23

 private String getUserInput() {24

 String answer = null;25

26

 System.out.print("Would you like milk and sugar with your coffee (y/n)? ");27

28

 BufferedReader in = new BufferedReader(new InputStreamReader(System.in));29

 try {30

 answer = in.readLine();31

 } catch (IOException ioe) {32

 System.err.println("IO error trying to read your answer");33

 }34

 if (answer == null) {35

 return "no";36

 }37

 return answer;38

 }39

}40

41

Adding a Hook
to Coffee

Demonstration

28

© Kenneth M. Anderson, 2012

New Design Principle: Hollywood Principle

• Don’t call us, we’ll call you

• Or, in OO terms, high-level components call low-level components, not the
other way around

• In the context of the template method pattern, the template method lives
in a high-level class and invokes methods that live in its subclasses

• This principle is similar to the dependency inversion principle: “Depend upon
abstractions. Do not depend upon concrete classes.”

• Template method encourages clients to interact with the abstract class
that defines template methods as much as possible; this discourages the
client from depending on the template method subclasses

29

© Kenneth M. Anderson, 2012

Template Methods in the Wild

• Template Method is used a lot since it’s a great design tool for creating
frameworks

• the framework specifies how something should be done with a template
method

• that method invokes abstract hook methods that allow client-specific
subclasses to “hook into” the framework and take advantage of its services

• Examples in the Java API

• Sorting using compareTo() method

• Frames in Swing

• Applets

• Demonstration

30

© Kenneth M. Anderson, 2012

Template Method vs. Strategy (I)

• Both Template Method and Strategy deal with the encapsulation of algorithms

• Template Method focuses encapsulation on the steps of the algorithm

• Strategy focuses on encapsulating entire algorithms

• You can use both patterns at the same time if you want

• Strategy Structure

performOperation()
setAlgorithm(a: Algorithm)

Client

operation()
Algorithm

ConcreteAlgorithm1

strategy

ConcreteAlgorithmN...

strategy.operation()

31

© Kenneth M. Anderson, 2012

Template Method vs. Strategy (II)

• Template Method encapsulate the details of algorithms using inheritance

• Factory Method can now be seen as a specialization of the Template
Method pattern

• In contrast, Strategy does a similar thing but uses composition/delegation

Product

ConcreteProduct

factoryMethod(): Product
operation()

Creator

factoryMethod(): ConcreteProduct
ConcreteCreator

32

© Kenneth M. Anderson, 2012

Template Method vs. Strategy (III)

• Because it uses inheritance, Template Method offers code reuse benefits not
typically seen with the Strategy pattern

• On the other hand, Strategy provides run-time flexibility because of its use of
composition/delegation

• You can switch to an entirely different algorithm when using Strategy,
something that you can’t do when using Template Method

33

© Kenneth M. Anderson, 2012

State Pattern: Definition

• The state pattern provides a clean way for an object to vary its behavior
based on its current “state”

• That is, the object’s public interface doesn’t change but each method’s
behavior may be different as the object’s internal state changes

• Definition: The State Pattern allows an object to alter its behavior when its
internal state changes. The object will appear to change its class.

• If we associate a class with behavior, then

• since the state pattern allows an object to change its behavior

• it will seem as if the object is an instance of a different class each time
it changes state

34

© Kenneth M. Anderson, 2012

State Pattern: Structure

op1()
Context

state.op1()

op1()
Statestate

op1()
ConcreteStateA

op1()
ConcreteStateB

Look Familiar?

35

© Kenneth M. Anderson, 2012

Strategy Pattern: Structure

performOperation()
setAlgorithm(a: Algorithm)

Client

operation()
Algorithm

ConcreteAlgorithm1

strategy

ConcreteAlgorithmN...

strategy.operation()

Strategy and State Patterns: Separated at Birth?!

Strategy and State are structurally equivalent; their intent however is
different.

Strategy is meant to share behavior with classes without resorting to
inheritance; it allows this behavior to be configured at run-time and to
change if needed; State has a very different purpose, as we shall see.

36

© Kenneth M. Anderson, 2012

Example: State Machines for Gumball Machines

Each circle
represents a state
that the gumball
machine can be in.

Each label
corresponds to an
event (method call)
that can occur on
the object

37

Has

Quarter

No

Quarter

Sold

Gumball

Out of

Gumballs

inserts quarter

ejects quarter

turns crank

[gumballs = 0] dispense()

[gumballs > 0] dispense()

© Kenneth M. Anderson, 2012

Modeling State without State Pattern

• Create instance variable to track current state

• Define constants: one for each state

• For example

• final static int SOLD_OUT = 0;

• int state = SOLD_OUT;

• Create class to act as a state machine

• One method per state transition

• Inside each method, we code the behavior that transition would have
given the current state; we do this using conditional statements

• Demonstration

38

© Kenneth M. Anderson, 2012

Seemed Like a Good Idea At The Time... (I)

• This approach to implementing state machines is intuitive

• and most people would stumble into it if asked to implement a state
machine for the first time

• But the problems with this approach become clear as soon as change
requests start rolling in

• With each change, you discover that a lot of work must occur to update
the code that implements the state machine

39

© Kenneth M. Anderson, 2012

Seemed Like a Good Idea At The Time... (II)

• Indeed, in the Gumball example, you get a request that the behavior should
change such that roughly 10% of the time, it dispenses two gumballs rather
than one

• Requires a change such that the “turns crank” action from the state “Has
Quarter” will take you either to “Gumball Sold” or to “Winner”

• The problem? You need to add one new state and update the code for
each action

40

© Kenneth M. Anderson, 2012

Design Problems with First Attempt

• Does not support Open Closed Principle

• A change to the state machine requires a change to the original class

• You can’t place new state machine behavior in an extension of the
original class

• The design is not very object-oriented: indeed no objects at all except for the
one that represents the state machine, in our case GumballMachine.

• State transitions are not explicit; they are hidden amongst a ton of conditional
code

• We have not “encapsulated what varies”

41

© Kenneth M. Anderson, 2012

2nd Attempt: Use State Pattern

• Create a State interface that has one method per state transition

• Create one class per state in state machine. Each such class implements the
State interface and provides the correct behavior for each action in that state

• Change GumballMachine class to point at an instance of one of the State
implementations and delegate all calls to that class. An action may change
the current state of the GumballMachine by making it point at a different State
implementation

• Demonstration

42

© Kenneth M. Anderson, 2012

State Pattern in Action (I)

Gumball

Machine

States

NoQuarter

HasQuarter

Sold

SoldOut

43

© Kenneth M. Anderson, 2012

State Pattern in Action (II)

Gumball

Machine

States

NoQuarter

HasQuarter

Sold

SoldOut

current state

44

© Kenneth M. Anderson, 2012

State Pattern in Action (III)

Gumball

Machine

States

NoQuarter

HasQuarter

Sold

SoldOut

current stateturnCrank()
turnCrank()

45

© Kenneth M. Anderson, 2012

State Pattern in Action (IV)

Gumball
Machine

States

NoQuarter

HasQuarter

Sold

SoldOut

current state

dispense()

46

© Kenneth M. Anderson, 2012

Third Attempt: Implement 1 in 10 Game

• Demonstrates flexibility of State Pattern

• Add a new State implementation: WinnerState

• Exactly like SoldState except that its dispense() method will dispense
two gumballs from the machine, checking to make sure that the
gumball machine has at least two gumballs

• You can have WinnerState be a subclass of SoldState and just
override the dispense() method

• Update HasQuarterState to generate random number between 1 and 10

• if number == 1, then switch to an instance of WinnerState else an
instance of SoldState

• Demonstration

47

© Kenneth M. Anderson, 2012

Bonus Pattern: Flyweight

• Intent

• Use sharing to support large numbers of fine-grained objects efficiently

• Motivation

• Imagine a text editor that creates one object per character in a document

• For large documents, that is a lot of objects!

• but for simple text documents, there are only 26 letters, 10 digits, and a
handful of punctuation marks being referenced by all of the individual
character objects

48

© Kenneth M. Anderson, 2012

Flyweight, continued

• Applicability

• Use flyweight when all of the following are true

• An application uses a large number of objects

• Storage costs are high because of the sheer quantity of objects

• Most object state can be made extrinsic

• Many groups of objects may be replaced by relatively few shared
objects once extrinsic state is removed

• The application does not depend on object identity. Since flyweight
objects may be shared, identity tests will return true for conceptually
distinct objects

49

© Kenneth M. Anderson, 2012

Flyweight’s Structure and Roles

if (flyweights[key] exists) {

return existing flyweight

} else {

create new flyweight

add to pool of flyweights

return the new flyweight

}

FlyweightFactory

GetFlyweight(key)

Flyweight

op(extrinsicState)

Client

flyweights

ConcreteFlyweight

op(extrinsicState)

intrinsicState

50

© Kenneth M. Anderson, 2012

Flyweight Participants

• Flyweight

• declares an interface through which flyweights can receive and act on extrinsic state

• ConcreteFlyweight

• implements Flyweight interface and adds storage for intrinsic state

• UnsharedConcreteFlyweight

• not all flyweights need to be shared; unshared flyweights typically have children
which are flyweights

• FlyweightFactory

• creates and manages flyweight objects

• Client

• maintains extrinsic state and stores references to flyweights

51

© Kenneth M. Anderson, 2012

Flyweight, continued

• Collaborations

• Data that a flyweight needs to process must be classified as intrinsic or
extrinsic

• Intrinsic is stored with flyweight; Extrinsic is stored with client

• Clients should not instantiate ConcreteFlyweights directly

• Consequences

• Storage savings is a tradeoff between total reduction in number of objects
verses the amount of intrinsic state per flyweight and whether or not
extrinsic state is computed or stored

• greatest savings occur when extrinsic state is computed

52

© Kenneth M. Anderson, 2012

Flyweight, continued

• Demonstration

• Simple implementation of flyweight pattern

• Focus is on factory and flyweight rather than on client

• Demonstrates how to do simple sharing of characters

53

© Kenneth M. Anderson, 2012

Wrapping Up

• Observer

• Flexibly monitor an object’s state changes

• Template Method

• Specify overall structure of an algorithm; allow some variation via
overridden methods

• State

• Allow an object to completely change its behavior based on its current
state

• Flyweight

• Make the seeming creation of “lots of little objects” efficient

54

© Kenneth M. Anderson, 2012

Coming Up Next

• Lecture 25: More Patterns

• Lecture 26: Textbook Wrap Up

• Homework 6 Due Next Friday

55

