
© Kenneth M. Anderson, 2012

More Design Techniques

CSCI 4448/5448: Object-Oriented Analysis & Design
Lecture 24 — 11/15/2012

1

© Kenneth M. Anderson, 2012

Goals of the Lecture

• Cover the material in Chapters 15 & 16 of our textbook

• Commonality and Variability Analysis

• The Analysis Matrix

• And, jump ahead and cover a design pattern

• Decorator from Chapter 17

2

© Kenneth M. Anderson, 2012

More Design Techniques

• You may not always be able to use design patterns to start your designs

• You can however apply the lessons learned from studying design patterns
in ALL of your designs

• For instance, you can apply a technique known as commonality and
variability analysis to identify variation in your problem domains

• You can then use design pattern principles to encapsulate that variation
and protect your software from potential changes

3

© Kenneth M. Anderson, 2012

Examine the Problem Domain (I)

• One key aspect of design is identifying what elements of the problem
domain belong in your solution domain

• You need to identify the right things to model (or track) in your software

• You want to do this as accurately as possible because the next step is to
identify the relationships between those concepts

• Once you have the relationships defined, changes to the design
become more difficult

4

© Kenneth M. Anderson, 2012

Examine the Problem Domain (II)

• Once you have concepts and relationships defined, inserting new concepts
and relationships is less easy

• You have to decide where the new concepts “fit” and how they will be
integrated into the existing design

• Existing relationships may change or be removed and new ones will be
inserted

• This is why maintenance is so hard, when you are asked to change existing
functionality or add new functionality, you must deal with the web of concepts
and relationships that already exist in the system

5

© Kenneth M. Anderson, 2012

Use Commonality and Variability Analysis

• Commonality and Variability Analysis attempts to identify the commonalities
(generic concepts) and variations (concrete implementations) in a problem
domain

• Such analysis will produce the abstract base classes that can be used to
interface with the concrete implementations in a generic way that will
enable abstraction, type encapsulation and polymorphism

• Our authors demonstrate/explain the technique by example by applying it to
the CAD/CAM problem

6

© Kenneth M. Anderson, 2012

Applying CVA to CAD/CAM

• The CAD/CAM problem consists of

• Version 1 and Version 2 of the CAD/CAM System

• Slots, holes, cutouts, etc.

• Version 1 Models and Version 2 Models

• These are concrete variations of generic concepts

• CAD/CAM system, Feature, Model

• Generically: Commonality C has variations a, b, c

7

© Kenneth M. Anderson, 2012

Another technique

• Take any 2 elements of the problem domain

• And ask

• Is one of these a variation of the other?

• Are both of these a variation of something else?

• Iterate until you start to converge on the commonalities

• Each with their associated variations

• which are just concrete elements of the domain

8

© Kenneth M. Anderson, 2012

Potential Problem (I)

• Each commonality should be based on one issue

• Beware collapsing two or more issues into a concept

• For the CAD/CAM domain, you might do something like

• CAD/CAM Features

• V1Slot, V2Slot, V1Cutout, V2Cutout

• Here you have collapsed “feature” and “version” into a single concept

9

© Kenneth M. Anderson, 2012

Potential Problem (II)

• What you need is

• CAD/CAM System

• V1 and V2 (versions)

• Feature

• Slots, cutouts, holes, etc.

• Now you have one issue per concept

• and this will lead to more cohesive designs

10

© Kenneth M. Anderson, 2012

Translating to Classes

11

Model

V1Model V2Model Feature

Slot

HoleCutout

Special

Irregular

System

V2SystemV1System

© Kenneth M. Anderson, 2012

Identify Relationships

12

• If you are confident that you have identified the major concepts of the domain
and their variations, you are then ready to identify the relationships that exist
between them

• Models are aggregations of Features

• Models are generated from a CAD/CAM System

• Features are generated from a CAD/CAM System

• We will represent “is generated from” as a uses relationship, since it is
conceivable that once these concepts are instantiated, they access the
CAD system from time to time

© Kenneth M. Anderson, 2012

Translating to Class Diagram

13

Model

V1Model V2Model Feature

Slot

HoleCutout

Special

Irregular

System

V2SystemV1System

© Kenneth M. Anderson, 2012

Reflect on the Variations

14

• We have a duplication in the current design

• V1Model and V2Model

• AND

• V1System and V2System

• We can remove this duplication by deciding that a model produced by V1 will
have features that are different than a model produced by V2 and so we can
get by with just the variation in the CAD/CAM system

© Kenneth M. Anderson, 2012

Updated Class Diagram

15

Model

Feature

Slot

HoleCutout

Special

Irregular

System

V2SystemV1System

© Kenneth M. Anderson, 2012

Connect to the Actual Systems

16

• We must now connect this design to the actual CAD/CAM Systems

• CAD/CAM Version 1 has the C API

• CAD/CAM Version 2 has the OO API

© Kenneth M. Anderson, 2012

Updated Class Diagram

17

Model

Feature

Slot

HoleCutout

Special

Irregular

System

V2SystemV1System

V1Modules OOGFeature

OOGCutout

© Kenneth M. Anderson, 2012

Compare with Previous Design

18

Feature

Slot Special

Model

Hole •••

FeatureImpl

V1Impl V2Impl

V1Facade

V1 C API

OOGFeature

•••

© Kenneth M. Anderson, 2012

Comparison with Design Pattern Approach (I)

19

• CVA produced a design that is similar to the design we created in Lecture 22
using an approach that was driven by design patterns

• Identify patterns that provide context for other patterns

• The two approaches are synergistic and can be used in tandem

• Design Patterns establish relationships between entities in the problem
domain

• CVA identifies entities in the problem domain and whether one entity is a
variation of another

© Kenneth M. Anderson, 2012

Comparison with Design Pattern Approach (II)

20

• The difference is that CVA can be used in all design contexts

• whereas the design pattern approach requires that you know of design
patterns that match the relationships found in the problem domain

© Kenneth M. Anderson, 2012

Another Technique: Analysis Matrix

• Chapter 16 presents another design technique

• known as the Analysis Matrix

• to help designers deal with large amounts of variations in a problem domain

• Our authors use an e-commerce system example in which packages must be
shipped to customers in response to orders

• where different rules become active depending on the countries involved
in the order

21

© Kenneth M. Anderson, 2012

Variations

• Real world domains have a lot of variations

• Patients always check in to a hospital before they are admitted

• UNLESS it is an emergency

• IN WHICH CASE they go to the emergency room to get stabilized
and

• THEN get admitted to the hospital

• (IF REQUIRED)

22

© Kenneth M. Anderson, 2012

Just like in CVA, Find Concepts

• When dealing with lots of variations, you still ask the question

• what concept is this “thing” a variation of

• To organize this work, you create a matrix

• a concept becomes a “row header”

• a variation is an entry in the matrix

• related variations go into a column

• and the column header groups the variations by a particular scenario
relevant to the problem domain

23

© Kenneth M. Anderson, 2012

Requirements are the Input

• The input to this process are the requirements gathered from the customer

• For the e-commerce system, we might have reqs like:

• Calculate shipping based on the country

• In the US, state and local taxes apply to the orders

• In Canada, use GST and PST for tax

• Use U.S. postal rules to verify addresses

• …

24

© Kenneth M. Anderson, 2012

Organize by Matrix

25

U.S. Orders Canadian Orders

Calculate Freight

Verify Addresses

Calculate Taxes

Money

Use U.S. Postal Rates Use Canadian Rates

Use U.S. Postal Rules Use Canadian Rules

Use State and Local Tax Rates Use GST and PST

U.S. Dollars Canadian Dollars

© Kenneth M. Anderson, 2012

U.S. Orders Canadian Orders

Calculate Freight

Verify Addresses

Calculate Taxes

Money

Use U.S. Postal Rates Use Canadian Rates

Use U.S. Postal Rules Use Canadian Rules

Use State and Local Tax Rates Use GST and PST

U.S. Dollars Canadian Dollars

Organize by Matrix

26

CONCRETE IMPLEMENTATIONS OF SHIPPING RATES

CONCRETE IMPLEMENTATIONS OF POSTAL RULES

CONCRETE IMPLEMENTATIONS OF TAX RULES

GENERIC CLASS THAT HANDLES CURRENCIES

© Kenneth M. Anderson, 2012

U.S. Orders Canadian Orders

Calculate Freight

Verify Addresses

Calculate Taxes

Money

Use U.S. Postal Rates Use Canadian Rates

Use U.S. Postal Rules Use Canadian Rules

Use State and Local Tax Rates Use GST and PST

U.S. Dollars Canadian Dollars

Organize by Matrix

27

STRATEGY PATTERN

STRATEGY PATTERN

STRATEGY PATTERN

GENERIC CLASS THAT HANDLES CURRENCIES

© Kenneth M. Anderson, 2012

U.S. Orders Canadian Orders

Calculate Freight

Verify Addresses

Calculate Taxes

Money

Use U.S. Postal Rates Use Canadian Rates

Use U.S. Postal Rules Use Canadian Rules

Use State and Local Tax Rates Use GST and PST

U.S. Dollars Canadian Dollars

Organize by Matrix

28

THESE
IMPLEMENTATIONS

ARE USED WHEN WE
HAVE A U.S.
CUSTOMER

THESE
IMPLEMENTATIONS

ARE USED WHEN WE
HAVE A CANADIAN

CUSTOMER

© Kenneth M. Anderson, 2012

U.S. Orders Canadian Orders

Calculate Freight

Verify Addresses

Calculate Taxes

Money

Use U.S. Postal Rates Use Canadian Rates

Use U.S. Postal Rules Use Canadian Rules

Use State and Local Tax Rates Use GST and PST

U.S. Dollars Canadian Dollars

Organize by Matrix

29

ABSTRACT
FACTORY

ABSTRACT
FACTORY

© Kenneth M. Anderson, 2012

Discussion (I)

• This technique gets more useful as the matrix gets bigger

• If you have requirements for a new scenario that adds an additional row
(concept) that you have not previously considered

• this indicates that your previous scenarios were incomplete

• you can now go back and fill in the missing pieces

30

© Kenneth M. Anderson, 2012

Discussion (II)

• Sometimes your special cases will have special cases

• In the U.S. different shippers may have different requirements and different
fees

• You can capture this information in another analysis matrix that shares
some of the columns and rows of the original but which add additional
concepts just for those special situations

31

© Kenneth M. Anderson, 2012

Discussion (III)

• We’ve now seen four design techniques

• The OO A&D method of Lecture 6

• Design Pattern-Driven Design

• Commonality and Variability Analysis

• Analysis Matrix

• Which one should we use?

• Whatever helps you make progress! You might use more than one and
switch between them until they converge

32

© Kenneth M. Anderson, 2012

Decorator Pattern

• The Decorator Pattern provides a powerful mechanism for adding new
behaviors to an object at run-time

• The mechanism is based on the notion of “wrapping” which is just a fancy
way of saying “delegation” but with the added twist that the delegator
and the delegate both implement the same interface

• You start with object A that implements interface C

• You then create object B that also implements interface C

• You pass A into B’s constructor and then pass B to A’s client

• The client thinks its talking to A (via C’s interface) but its actually talking
to B

• B’s methods augment A’s methods to provide new behavior

33

© Kenneth M. Anderson, 2012

Why? Open-Closed Principle

• The decorator pattern provides yet another way in which a class’s runtime
behavior can be extended without requiring modification to the class

• This supports the goal of the open-closed principle:

• Classes should be open for extension but closed to modification

• Inheritance is one way to do this, but composition and delegation are
more flexible (and Decorator takes advantage of delegation)

• As the Gang of Four put it: “Decorator lets you attach additional
responsibilities to an object dynamically. Decorators provide a flexible
alternative to subclassing for extending functionality.”

• Our “Starbuzz Coffee” example, taken from Head First Design Patterns,
clearly demonstrates why inheritance can get you into trouble and why
delegation/composition provides greater run-time flexibility

34

© Kenneth M. Anderson, 2012

Starbuzz Coffee

• Under pressure to update their “point of sale” system to keep up with their
expanding set of beverage products

• Started with a Beverage abstract base class and four implementations:
HouseBlend, DarkRoast, Decaf, and Espresso

• Each beverage can provide a description and compute its cost

• But they also offer a range of condiments including: steamed milk, soy,
and mocha

• These condiments alter a beverage’s description and cost

• The use of the word “Alter” here is key since it provides a hint that
we might be able to use the Decorator pattern

35

© Kenneth M. Anderson, 2012

Initial Starbuzz System

getDescription()
cost()

description

Beverage
«Abstract»

cost()
HouseBlend

cost()
DarkRoast

cost()
Decaf

cost()
Espresso

With inheritance on your brain, you may add condiments to this design in
one of two ways

1. One subclass per combination of condiment (wont work in general but
especially not in Boulder!)
2. Add condiment handling to the Beverage superclass

36

© Kenneth M. Anderson, 2012

Approach One: One Subclass per Combination

getDescription()
cost()

description

Beverage
«Abstract»

cost()
HouseBlend

cost()
DarkRoast

cost()
Decaf

cost()
Espresso

cost()
HouseBlendWithSteamedMilkandMocha

cost()
HouseBlendWithSoyandMocha

cost()
EspressoWithSoyAndMocha

cost()
DecafWithWhipandSoy

This is incomplete, but you can see the problem…

37

© Kenneth M. Anderson, 2012

Approach Two: Let Beverage Handle Condiments

getDescription()
hasMilk()
setMilk()
hasSoy()
...
cost()

description
milk
soy
mocha
whip

Beverage
«Abstract»

cost()
HouseBlend

cost()
DarkRoast

cost()
Decaf

cost()
Espresso

Houston, we have a problem…

1. This assumes that all concrete Beverage classes need these condiments
2. Condiments may vary (old ones go, new ones are added, price changes
occur, etc.), shouldn’t Beverage be encapsulated from this some how?
3. How do you handle “double soy” drinks with boolean variables?

38

© Kenneth M. Anderson, 2012

Decorator Pattern: Definition and Structure

methodA()

methodB()

Component

methodA()

methodB()

...

att1

att2

ConcreteComponent
methodA()

methodB()

Decorator

methodA()

methodB()

...

ConcreteDecoratorA

methodA()

methodB()

...

newatt1

newatt2

ConcreteDecoratorB

component Inheritance is used to make
sure that components and
decorators share the same
interface: namely the public
interface of Component
which is either an abstract
class or an interface

At run-time, concrete
decorators wrap
concrete components
and/or other concrete
decorators

The object to be
wrapped is typically
passed in via the
constructor 39

Each decorator is cohesive, focusing just on its added functionality

© Kenneth M. Anderson, 2012

Client Perspective

Concrete
DecoratorB

Concrete
DecoratorA

Client
Concrete

Component

foo()

Concrete
Component

Client

foo() foo()

foo()

BEFORE

AFTER

In both situations,
Client thinks its talking to
a Component. It shouldn’t
know about the concrete
subclasses. 40

© Kenneth M. Anderson, 2012

StarBuzz Using Decorators (Incomplete)

getDescription()
cost()

Beverage

cost()
HouseBlend

getDescription()
cost()

CondimentDecorator

getDescription()
cost()

Milk
getDescription()
cost()

Soy

beverage

41

© Kenneth M. Anderson, 2012

Demonstration

• Starbuzz Example

• Use of Decorator Pattern in java.io package

• InputStream == Component

• FilterInputStream == Decorator

• FileInputStream, StringBufferInputStream, etc. == ConcreteComponent

• BufferedInputStream, LineNumberInputStream, etc. == ConcreteDecorator

42

© Kenneth M. Anderson, 2012

The Textbook’s Take (I)

• As we saw, Decorator offers another solution to the problem of rapidly
multiplying combinations of subclasses

• we saw examples of other solutions back in Chapters 8 and 10 where we
made use of the strategy pattern and the bridge pattern

• The decorator pattern provides a means for creating different combinations of
functionality by creating chains in which each member of the chain can
augment or “decorate” the output of the previous member

• Plus, it separates the step of building these chains from the use of these
chains

43

© Kenneth M. Anderson, 2012

The Textbook’s Take (II)

• The Decorator pattern comes into play when there are a variety of optional
functions that can precede or follow another function that is always executed

• This is a very powerful idea that can be implemented in a variety of ways (see
the end of Chapter 17 for a discussion of some of the variations)

• The fact that all of the classes in the decorator pattern hide behind the
abstraction of Component enables all of the good benefits of OO design
discussed previously

44

© Kenneth M. Anderson, 2012

Wrapping Up

• Commonality and Variability Analysis

• helps us identify generic concepts in our problem domains and their
associated concrete implementations

• Analysis Matrix

• helps us deal with variations in a problem domain and provide hints as to
the concepts they are related to and how to implement them

• Decorator Pattern

• Another technique for applying the open-closed principle

45

© Kenneth M. Anderson, 2012

Coming Up Next

• Homework 5 and Presentations are due tomorrow

• FALL BREAK! Happy Thanksgiving!

• When we return

• Lecture 25: Observer, Template Method

• Chapters 18 and 19

• Plus Two Bonus Design Patterns!

46

