
© Kenneth M. Anderson, 2012

Advanced Android

CSCI 4448/5448: Object-Oriented Analysis & Design
Lecture 19 — 10/30/2012

1

© Kenneth M. Anderson, 2012

Goals of the Lecture

• Present more examples of the Android Framework

• Passing Information between Activities

• Reading and Writing Files

• 2D Graphics and Touch Events

• Application Preferences

• Working with a Database

2

© Kenneth M. Anderson, 2012

Passing Information

• In our examples so far

• we’ve seen one activity launch another activity

• but each activity has been independent of the other

• We’re going to look at two additional concepts

• Fragments: reusable bits of UI and behavior that live inside activities

• Passing Information: how do we pass information between activities

• We’ll also take a look at how an activity can store data into a file that
persists between sessions of using the application

3

© Kenneth M. Anderson, 2012

Profile Viewer

• Profile viewer will

• Use one activity/fragment to display a list of user names

• This activity can also delete existing users

• Use a second activity/fragment to add new users and edit existing users

• Our program will use Java serialization to persist user names and profiles

• The data structure will be a Map<String, ProfileData>

• We’ll discuss ProfileData in a moment

• But first, fragments!

4

© Kenneth M. Anderson, 2012

Activities and Fragments (I)

• Activities can now contain multiple fragments

• Fragments are reusable units of UI with their own life cycle

• this life cycle is however synched with the life cycle of its activity

• onCreate(), onPause(), onResume(), etc.

• Fragments provide flexibility when presenting the UI of an application on
either a phone or a tablet

• You’re initial activity can detect how much screen real estate is available
and then either choose to display fragments in a set of activities (for
phones with small displays) or to embed multiple fragments inside of a
single activity (for tablets with larger displays)

• Migrating to fragments from activities is straightforward

5

© Kenneth M. Anderson, 2012

Activities and Fragments (II)

• The scenario I outlined on the previous slide is shown graphically here:

6

Image credit: <http://developer.android.com/guide/components/fragments.html>

http://developer.android.com/guide/components/fragments.html
http://developer.android.com/guide/components/fragments.html

© Kenneth M. Anderson, 2012

Java Serialization (I)

• Java serialization is a technology that can both

• persist a set of objects, and

• later retrieve that set such that all objects are recreated and all
connections between them are reestablished

• java.io provides two classes to help with this

• ObjectOutputStream and ObjectInputStream

• You use the former to save and the latter to load

7

© Kenneth M. Anderson, 2012

Java Serialization (II)

• Most Java types, including collections, can be serialized

• User-defined types can also be serialized

• You need to implement java.io.Serializable

• And, you need to implement two methods

• readObject(ObjectInputStream stream)

• writeObject(ObjectOutputStream stream)

8

© Kenneth M. Anderson, 2012

Java Serialization (III)

• In writeObject(), you place code that writes each internal attribute of your
object on to the output stream

• In readObject(), you place code that reads each attribute off of the input
stream in the same order they were written by writeObject

• Then, when it comes time for your class to be persisted, Java’s serialization
framework will call readObject() and writeObject() as needed passing the
appropriate IO stream

9

© Kenneth M. Anderson, 2012

ProfileData (I)

• For our Profile Viewer application, our ProfileData class stores a user’s first
name, last name, and e-mail address

• ProfileData is implemented as a data holder with getter and setter
methods for each attribute

• It implements java.io.Serializable as needed

• It also contains a serialVersionUID attribute—generated by Eclipse—that
is used to add support for versioning.

• If we ever change the ProfileData class, we’ll need to update the UID.

• Advanced implementations would then use the UID to determine
which version a file used and load it using the correct code

10

© Kenneth M. Anderson, 2012

Profile Data (II)

• Our writeObject Method looks like this

private void writeObject(ObjectOutputStream stream) throws
IOException {

 stream.writeObject(firstName);

 stream.writeObject(lastName);

 stream.writeObject(email);

}

• writeObject() is defined multiple times for multiple types

11

© Kenneth M. Anderson, 2012

Profile Data (III)

• Our readObject Method looks like this

private void readObject(ObjectInputStream stream) throws
IOException, ClassNotFoundException {

 firstName = (String)stream.readObject();

 lastName = (String)stream.readObject();

 email = (String)stream.readObject();

 }

• If we try to read a String and the file contains something else, then a
ClassNotFoundException will be thrown by ObjectInputStream

12

© Kenneth M. Anderson, 2012

Java Serialization (IV)

• Having configured ProfileData in this way, then the code to write a
Map<String, ProfileData> data structure is:

ObjectOutputStream output =

 new ObjectOutputStream(new FileOutputStream(f));

output.writeObject(profiles);

• Two lines of code! (Ignoring exception handlers)

13

© Kenneth M. Anderson, 2012

Java Serialization (V)

• The code to read a Map<String, ProfileData> is:

ObjectInputStream input =

 new ObjectInputStream(new FileInputStream(f));

profiles = (TreeMap<String,ProfileData>) input.readObject();

• Just two more lines of code!

14

© Kenneth M. Anderson, 2012

Java Serialization (VI)

• Hiding in those two lines of code was a reference to a variable named “f”;
Here’s the relevant part:

• new FileInputStream(f) or new FileOutputStream(f)

• As an aside: java.io is based on the Decorator pattern

• In both cases, we were passing an instance of java.io.File to the IO streams
to specify where our persistent data is stored

• So, now we need to look at how we deal with files in Android

15

© Kenneth M. Anderson, 2012

Dealing With Files (I)

• Each Android application has a directory on the file system

• You can verify this by launching an emulator and then invoking the “adb -e
shell” command

• adb is stored in $ANDROID/tools (2.x) or $ANDROID/platform_tools (3.x
and 4.x)

• This command provides you with a command prompt to your device; recall
that Android runs on linux

• cd to data/data to see a list of application directories

• If you encounter permission problems, run the command “su” and see if
that helps

• If so, be careful, you’re now running as root!

16

© Kenneth M. Anderson, 2012

Dealing With Files (II)

• For Profile Viewer, cd into the edu.colorado.profileviewer directory (you’ll
need to compile and install Profile Viewer onto your device first!)

• That directory contains two subdirectories

• files and lib

• Whenever you ask for access to your application’s directory and create a
file, it will be stored in the “files” subdirectory

• Application directories are private; other apps can’t access them

17

© Kenneth M. Anderson, 2012

Dealing With Files (III)

• Android provides several useful methods for accessing your application’s
private directory

• getFilesDir() - returns a java.io.File that points at the directory

• fileList() - returns list of file names in app’s directory

• openFileInput() - returns FileInputStream for reading

• openFileOutput() - returns FileOutputStream for writing

• deleteFile() - deletes a file that is no longer needed

18

© Kenneth M. Anderson, 2012

Profile Viewer’s Use of Files

• In Profile Viewer, all we need to use is getFilesDir()

• We use that to create a java.io.File object that points at a file called
“profiles.bin” in our app’s directory

• We then pass that file to our save/load methods

• That code looks like this

• profiles.load(new File(getFilesDir(), "profiles.bin"));

19

© Kenneth M. Anderson, 2012

Back to “Passing Information”

• When we select a user and click Edit, we switch from the initial activity to an
“edit profile” activity

• We want that second activity to display the profile of the selected user

• How do we pass that information?

• In Android, that information gets passed via the Intent that is used to
launch the second activity

20

© Kenneth M. Anderson, 2012

Passing Information (II)

• Each intent has a map associated with it that can store arbitrary Java objects

• The Map is updated via putExtra(key, value)

• The Map is accessed via get*Extra(key) where “*” can be one of several
type names

• In Profile Viewer, we use getStringExtra(key) because the user name
we store is a string

• An activity can get access to the intent that launched it via a call to
getIntent() which is a method inherited from Activity

21

© Kenneth M. Anderson, 2012

Passing Information (III)

• So, to pass information we do this in our fragment

• Intent intent = new Intent(this, EditProfile.class);

• intent.putExtra("name", username);

• getActivity().startActivity(intent);

• To retrieve it, we do this in the Edit Profile fragment

• username = getActivity().getIntent().getStringExtra("name");

• Simple!

22

© Kenneth M. Anderson, 2012

Other Highlights

• Profile Viewer also shows

• how to use fragments and how they interact with activities

• how to add menu items to the ActionBar

• how to enable/disable menu items based on list selections

• how to save/load data in onResume() and onPause() to ensure that data is
synced between activities

23

Demo

© Kenneth M. Anderson, 2012

2D Graphics and Touch Events

• The Simple Paint program takes a look at how to do simple 2D graphics in
Android

• and how to handle touch events

• Whenever you want to do your own drawing, you need access to a canvas

• If you create a subclass of View and then override the onDraw(Canvas)
method, you gain access to a canvas

• Essentially, a view IS-A canvas

24

© Kenneth M. Anderson, 2012

Key Concepts (I)

• We draw on a canvas

• In order to draw a shape, we first need a Paint object; it specifies a wide
range of attributes that influences drawing

• We then invoke one of canvas’s draw methods, passing in the shape info
and our paint object

• In our program, we create one Paint object called background which we use
to paint the canvas white

• and a second Paint object used to paint Rectangles

25

© Kenneth M. Anderson, 2012

Key Concepts (II)

• Draw on Demand

• As with most frameworks, drawing in Android is done on demand when
the framework determines that an update is needed

• say if our view gets exposed because a window on top of it moves

• or when our own code calls invalidate()

• onDraw is then called and we draw the current state of the view as
determined by our program’s data structures

• onDraw() is where all drawing occurs; it does NOT occur (for instance)
when we are handling a touch event

• This is an important concept, the event handler for touch events simply
updates our data structures and returns; drawing happens later

26

© Kenneth M. Anderson, 2012

OnDraw (I)

• Our SimplePaint program allows rectangles to be drawn in four different
colors

• We have a data structure that keeps track of the rectangles that have been
created and the Paint object used to draw each one

• If we are in the middle of handling a touch event, a rectangle called
motionRect exists and we will draw it as well

• Our onDraw method is shown on the next slide

27

© Kenneth M. Anderson, 2012

OnDraw (II)

• protected void onDraw(Canvas canvas) {

• canvas.drawRect(0, 0, getWidth(), getHeight(), background);

• for (Rectangle r : rects) {

• canvas.drawRect(r.r, r.paint);

• }

• if (motionRect != null && motionRect.bottom > 0 &&
motionRect.right > 0) {

• canvas.drawRect(motionRect, current);

• }

• }

28

© Kenneth M. Anderson, 2012

Handling Touch Events (I)

• To handle a touch event on our custom view

• we override the onTouchEvent() method

• we then process the MotionEvent instance that we are passed

• and then return true to ensure that we get all of the events related to the
touch event

• There are three stages:

• DOWN (the start), MOVE (updates), UP (the end)

29

© Kenneth M. Anderson, 2012

Handling Touch Events (II)

• An ACTION_DOWN event means that the user has just touched the screen

• In our program, we create motionRect and set its top, left corner

• An ACTION_MOVE event means the user is moving their finger across the
screen

• we update the bottom, right corner and invalidate

• An ACTION_UP event means the user has lifted their finger from the screen

• We update motionRect with the last x, y coordinate, add motionRect to our
data structures and then set motionRect to null

30

© Kenneth M. Anderson, 2012

Handling Touch Events (III)

• Finally, to actually receive touch events, we need to do three things

• In the constructor of our View subclass, we need to call

• setFocusable(true);

• setFocusableInTouchMode(true);

• In the constructor of our activity, we get a handle to our View subclass and
call requestFocus();

• That ensures that Android sends events to the view

31

© Kenneth M. Anderson, 2012

Other Highlights

• Simple Paint also demonstrates the use of

• a radio group to keep track of the current paint color

• Android’s preference mechanism to let the current paint color persist
between runs of the application

• You call getSharedPreferences to gain access to a map that contains
your apps preferences

• You can read and write preference values in a straightforward
manner

32

Demo

© Kenneth M. Anderson, 2012

Android’s support for SQLite

• Android makes it straightforward to interact with SQLite databases

• SQLite is a public domain SQL library that stores a database as a text file
and provides standard CRUD operations on that text file

• as if you were actually talking to a database server

• Android provides a class to make creating/opening a database a snap, a
class that allows standard select, insert, update and delete statements to be
executed and a Cursor class for processing result sets

33

© Kenneth M. Anderson, 2012

SQL Example

• For this example, I recreated Profile Viewer and

• dropped our custom Profiles / ProfileData classes that made use of Java
serialization

• and incorporated the use of an SQLite database

• As you will see, all of the original functionality could be recreated and the
resulting program is just a tad simpler

• IF you are comfortable with database programming and SQL; if not, it will
seem confusing!

• Note: this version of the program does not use Fragments

• To keep things simple, this program only uses activities to handle the UI

34

© Kenneth M. Anderson, 2012

SQLiteOpenHelper

• To create a database, you make a subclass of SQLiteOpenHelper

• It takes care of creating and opening a SQLite database for you at run-time

• All you need to do is to supply the CREATE TABLE statement needed to
create the table you’ll be using

• I created a table whose columns correspond to Profile Viewer’s profile
name, first name, last name, and e-mail address attributes

35

© Kenneth M. Anderson, 2012

Accessing the Database

• In your activity, creating an instance of your OpenHelper subclass,
automatically creates (if needed) your database and opens it

• In your onStop() method, you need to remember to close the database

• You then can acquire the database for reading or writing as needed with calls
to getReadableDatabase() or getWriteableDatabase()

36

© Kenneth M. Anderson, 2012

CRUD Support

• In databases, you can create, read, update or delete rows in a table

• In Android’s database object these correspond to

• insert, query, update, delete

• These are methods, you supply snippets of SQL to these methods; they
create the full SQL statement in the background and then execute it against
the database

37

© Kenneth M. Anderson, 2012

Selected Snippets (I)

• Getting a list of profile names from the database

• SQLiteDatabase db = profileDB.getReadableDatabase();

• Cursor cursor =

• db.query("profiles", new String[] { "profile" }, null, null, null, null,
"profile");

• while (cursor.moveToNext()) {

• adapter.add(cursor.getString(0));

• }

• cursor.close();

38

© Kenneth M. Anderson, 2012

Selected Snippets (II)

• Deleting a profile from the database

• 	SQLiteDatabase db = profileDB.getWritableDatabase();

• 	db.delete("profiles", "profile = ?", new String[] { name });

• The “profile = ?” is part of an SQL WHERE clause;

• the ? mark is a placeholder

• It gets replaced by the value of the variable “name” which is passed in via a
String array: “new String[] { name }” is a string array literal in Java

39

© Kenneth M. Anderson, 2012

Selected Snippets (III)

• Inserting a new profile into the database

• 	 SQLiteDatabase db = profileDB.getWritableDatabase();

• 	 ContentValues values = new ContentValues();

• 	 values.put("profile", name);

• 	 values.put("first", first);

• 	 values.put("last", last);

• 	 values.put("email", email);

• 	 db.insertOrThrow("profiles", null, values);

40

© Kenneth M. Anderson, 2012

Wrapping Up

• Learned more about the Android framework

• Passing Information between Activities

• Reading and Writing Files

• 2D Graphics and Touch Events

• Application Preferences

• Working with a Database

• This ends our woefully incomplete review of the Android Framework;
however, our three lectures should be enough to get you started!

41

© Kenneth M. Anderson, 2012

Coming Up Next

• Lecture 20: Advanced iOS

• Homework 4 Due Next Week

42

