Intermediate 10S

CSCl 4448/5448: Object-Oriented Analysis & Design
Lecture 17 — 10/23/2012

© Kenneth M. Anderson, 2012

Goals of the Lecture

- Learn more about iOS
» In particular, the ins and outs of view controllers and storyboards
* Plus
* Navigation Controllers
- Tab Bar Controllers
- Table View Controllers

» All of these allow us to explore storyboards with multiple view
controllers

© Kenneth M. Anderson, 2012

Credit for lcons

 For the Tab Bar Controller example, | make use of a free set of icons
developed by APP-BITS

- APP-BITS website: <http://app-bits.com/>

 Free Icons: <http://app-bits.com/free-icons.html>

- I’'ve included the entire distribution inside of the sample code for Lecture 17

© Kenneth M. Anderson, 2012

http://app-bits.com
http://app-bits.com
http://app-bits.com/free-icons.html
http://app-bits.com/free-icons.html

I0S Fundamentals (1)

- Each iOS application has
« one application delegate
* one window
* one or more view controllers

 each view controller has one view that typically has many sub-views
arranged in a tree structure

* e.g. views contain panels contain lists contain items...

 one storyboard (if present) that specifies the interconnections of the
application’s view controllers

© Kenneth M. Anderson, 2012

IOS Application Architecture

UlApplication

sharedApplication()

UlViewController

UlApplicationDelegate

delegate

_ window
rootViewController

UlView

UlWindow

The storyboard (not shown)
determines which view
controller is visible at any
one time; that Is, which view

T subviews

controller I1s “root”

IOS Fundamentals (ll)

« A window has a “root” view controller
- It’s view fills the entire window
« Some view controllers act as “container controllers”
» They have a set of view controllers that they manipulate in various ways
- A tab bar controller will have one view controller per tab

- A navigation controller will have a set of view controllers that it
displays using a stack model

* When you transition in a navigation controller, you are either
pushing a new view controller onto the stack (which then

becomes visible) or you are popping a view controller off the
stack revealing the one beneath it

© Kenneth M. Anderson, 2012

IOS Fundamentals (ll)

At other times, we may switch the “root” view controller entirely

- the new view is displayed and the previous view controller (and its view) is
deallocated

- In all of these cases, storyboards can handle most of the transitions for us
 View controllers sit between our model objects and their views
* They access data and make sure the data appears correctly in the view
* They receive events from widgets and respond appropriately

« Let’s see some examples!

© Kenneth M. Anderson, 2012

Multiple View Application

* Let’s see an example of an iOS app with multiple view controllers
» Each view controller will have a view that
* has a distinct background color
 has a label that shows how many times this view has been visited
 contains buttons that navigate among the other view controllers
- We will create a Single View application called MultipleViews

* This provides us with the source code for one view controller and a
storyboard that is configured to load it as the root view controller

« We will then add two new view controllers to the application and use
segues to transition between the controllers

© Kenneth M. Anderson, 2012

Step 1: Rename First View Controller

- We want to create three view controllers
- RedViewController
« GreenViewController
- BlueViewController
- The default view controller, however, was called CUViewController
| want to rename it to be RedViewController but renaming can be tricky

* The current storyboard points at CUViewController; if | just rename the
class, | might mess up the connections that the template created

» This calls for refactoring

© Kenneth M. Anderson, 2012

Refactor = Rename... (l)

« Click on CUViewController.h and “control click” or right click the name of the
class

- |In the subsequent pop-up menu, select Refactor = Rename...

@interface CUViewCont

Copy
@end Paste

Find Selected Text in Workspace...

Show Issue

Jump to Definition

Structure >
Discard Changes...
Refactor > Rename...
. ' g Extract...
Open Ilf} A55|§tant E Itor Create Superclass...
ReveaI !n Pro;ectI Nawgator Move Up...
Reveal in Symbol Navigator Move Down...

Show in Finder Encapsulate...

CAantin s aro
Continue to Here

Speech >
Source Editor Help >
Services >

© Kenneth M. Anderson, 2012

Refactor = Rename... (ll)

 This brings up a dialog that lets you specify the new name of the class

 Be sure to select “Rename related files” and then click Preview

Rename CUViewController to RedViewController

v/ Rename related files

Cancel Preview

© Kenneth M. Anderson, 2012

Refactor = Rename... (|l

« As you can see, the refactoring renames the class, the class files, and the

storyboard!
Renaming CUViewController to RedViewController
| | = A -l p /) MultipleViews) MultipleViews) h' CUViewController.h) No Selection
v % MultipleViews v/ //
v MultipleViews 2 // CUViewController.h // CUViewController.h
v = MainStoryboard.storyb . // Mult ipleViews // Mult ipleViews
i @ |.h} . | - // //
o m RedViewControllerm(| 5 // (Created by Ken Anderson on 10/18/12. // Created by Ken Anderson on 10/18/12.

// Copyright (c) 2012 University of
Colorado. All rights reserved.
//

. #import <UIKit/UIKit.h>

@interface RedViewController :
UIViewController

@end

// Copyright (c) 2012 University of
Colorado. All rights reserved.
//

. #import <UIKit/UIKit.h>

@interface CUViewController :
UIViewController

@end

Refactor = Rename... (IV)

- Now, when | select the storyboard,

it has been updated to use the
newly renamed view controller

« We will now configure this view by

« changing its background color to
red

- adding a label with a big font for
the “view count”

* add two buttons: green and blue

 add properties to store view
counts and one to connect to
the label

© Kenneth M. Andersc Red View Controller 13

Finished Interface

© Kenneth M. Anderson, 2012

14

Finished Header File

o/ #import <UIKit/UIKit.h>

10

1 @interface RedViewController : UIViewController

12

iz @property (nonatomic) int redCount;
= @property (nonatomic) int greenCount;
15 @roperty (nonatomic) int blueCount;

16

@ @property (weak, nonatomic) IBOutlet UILabel xcountLabel;

18

19| @end

- The count properties stores the number of times we’ve visited each of the
three view controllers. These properties are automatically set to zero.

- The countlLabel property points to the label and will let us display the value of
the viewCount property

© Kenneth M. Anderson, 2012

When do we update the value”

- Each time the view controller is displayed, we want to
* increment viewCount
« update the label to display the latest count
* We need to make sure we do this at an appropriate time

* We can’t use viewDidLoad like we did in lecture 16 when we initialized
the “text to speech” engine since that method is only called once

- Instead, we want to be notified just before the view controller’s view is

displayed, which can happen multiple times during the lifetime of a view
controller as it gets hidden and redisplayed

- the method for that life cycle eventis viewWillAppear:

© Kenneth M. Anderson, 2012

16

First version of the .m File

@implementation RedViewController

— (void)viewWillAppear: (BOOL)animated {
[super viewWillAppear:animated];

, self.countLabel.text = [NSString stringWithFormat:@"%d", ++self.redCount];
)}

2| @end

« Our implementation of viewWillAppear: does two things

- It calls viewWillAppear: on our super class: UlViewController

- It does this to have UlViewController handle any animation that needs
to occur to make this view appear

- It then uses C’s ++ operator to first update the value of self.redCount, then

it converts that value to a string, and passes that string to the label for
display; All in one line of code!

© Kenneth M. Anderson, 2012 17

Create the Other View Controllers (l)

-« Select the storyboard and bring up the Object Library
-« Search for a View Controller object and drag it out onto the storyboard
* Do that one more time
* You now have a storyboard with three view controllers
« One points to the RedViewController
- The two new ones just point to generic UlViewController instances

- We’ll change that in a moment

© Kenneth M. Anderson, 2012

18

Create the Other View Controllers (l1)

« Use File = New = File... to add a new UlViewController subclass called

GreenViewController

« This will result in GreenViewController.h and GreenViewController.m to be
added to our project

* Do this one more time and call the third view controller BlueViewController

- Note: you can delete all of the template code that appears in
GreenViewController.m and BlueViewController.m

* Not the class definition, just the methods that appear within!

« These source code files are NOT currently connected to the new view
controllers in the storyboard

« Let’s fix that

© Kenneth M. Anderson, 2012 19

Create the Other View Controllers (ll)

 To attach the new view controllers in the storyboard with the new source code
files we need to use the ldentity Inspector (_3£3)

+ Select one of the new view controllers in the storyboard

* When you look at the Identity Inspector it will reveal that the class of this
object is UlViewController; Change the Class to GreenViewController

V¥ Custom Class

Before

Class | UlViewController v

V¥ Custom Class

Class | GreenViewController v After

+ Select the other view controller and change its class to BlueViewController

© Kenneth M. Anderson, 2012 20

Configure View Controllers and Code

* Now, we need to apply similar changes to our new view controllers

« We need to add buttons and labels, change background colors, create
properties, and implement viewWiIllAppear:

* Note: segue transitions follow “stack conventions”
 As such, the green and blue controllers have “Go Back” buttons
* More on this in a minute

* The storyboard will look similar to the image on the next slide

© Kenneth M. Anderson, 2012

21

Green View Controller

Red View Controller

Blue View Controller

© Kenneth M. Anderson, 2012

22

Verity Configuration is Correct

« We can now verify that our configuration of these three view controllers is
correct by running the application three times

- Each time, we take the arrow in the storyboard that points to the first view
controller

- and point it at a different view controller: first red, then green, then blue

« Each time that you run the app, you should see the selected view
controller and its label should read “1” for the RedViewController and “0”

for the other two
* The buttons don’t currently do anything

« We'll fix that next

© Kenneth M. Anderson, 2012 23

Segues (1)

A segue specifies a transition from one view controller to another
» These transitions form a stack

* You have your initial view controller and its view

- If you follow a segue to a second view controller
* it gets pushed on the stack
- and displayed

* It can then
- either dismiss itself and return to the previous view controller

- or follow another segue to push a third view controller onto the stack

© Kenneth M. Anderson, 2012 24

Segues (I1)

+ As a result, our app is going to do the following

» Display the red view controller as the root view controller

- When the Green button is pushed, a segue will transition to the Green View
Controller

- We push it’s Go Back button to return to the Red View Controller

- We do a similar thing when the Blue button is pushed, this time transitioning
to the Blue View Controller

» The red view controller will keep track of how many times we have visited each
view controller and pass that value to the green and blue controllers for display

 As a result, their viewWillAppear methods simply display their viewCount
properties; we do not increment the value like we did for the red controller

© Kenneth M. Anderson, 2012

25

Creating our First Segue

-+ Select the storyboard and select the RedViewController
- Control click on its Green button and drag to the GreenViewController
 Let go and a menu asks what type of segue to create

« Select Modal; Our segue is created (see next slide)

© Kenneth M. Anderson, 2012

26

r;j

Red View Controller

© Kenneth M. Anderson, 2012

Green View Controller

27

Configure First Segue

- Select the segue and bring up the Attributes Inspector (_384)
+ Use this dialog to give this segue the identifier “green”

+ Select the Flip Horizontal transition

V¥ Storyboard Segue

Identifier green

Style | Modal —
Transition | Flip Horizontal —
v/ Animates

* Run the app and click the Green button. Fun!

* No lines of code! However, the Green View Controller’s label said “07”;
we’ll fix that after we create the second transition

© Kenneth M. Anderson, 2012 28

Create and Configure Second Segue

 Control-Click on the Blue button and drag to the BlueViewController
- Select “modal” to create the second segue

« Configure this segue to have an identifier of “blue” and use the transition
“Cover Vertical”

- Save and Run the Application; Click the Blue button and enjoy!

 However, the Go Back buttons do not work

« Let’s fix that

© Kenneth M. Anderson, 2012

29

Create handleGoBack actions

- Use the technique from Lecture 16 to create handleGoBack methods in the
Blue and Green view controllers

* In those methods, we simply call the following method
- dismissViewControllerAnimated:completion:

« Like this

— (IBAction)handleGoBack: (UIButton x)sender {
[self dismissViewControllerAnimated:YES completion:NULL];
}

- With this in place, we can now move back and forth between all three view
controllers

« One last problem: the count for Blue and Green is always “0”

© Kenneth M. Anderson, 2012 30

Communicating Between View Controllers (l)

* In order to get the blue and green view controllers to display a count other
than zero, we need to have the red view controller tell them what to display

+ To do this, we must implement a method that

- |lets the red view controller configure the destination view controller

« after it’s been created

* but before it’s been displayed on the screen

- That method is called prepareForSegue:sender:

« This method passes in a segue object that we can use to retrieve the
destination view controller; we can then configure it

« We use our segue identifiers to figure out what to do (see next slide)

© Kenneth M. Anderson, 2012 31

Implementation of prepareForsegue:sender:

5 — (void)prepareForSegue: (UIStoryboardSegue *)segue sender:(id)sender {
if ([seque.identifier isEqualToString:@"green"]) {

GreenViewController *xvc = (GreenViewController x)segue.destinationViewController;
vc.viewCount = ++self.greenCount;

} else if ([seque.identifier isEqualToString:@"blue"]) {
BlueViewController; xvc = (BlueViewController; x)segue.destinationViewController;

vc.viewCount = ++self.blueCount;

- This method appears inside of RedViewController

* It checks the identifier property of the segue parameter to determine if we are
transitioning to the green view controller or the blue view controller

* It then type casts the destination view controller property to the appropriate

type, increments the appropriate count property and assigns that value to the
destination view controller’s viewCount property

© Kenneth M. Anderson, 2012 32

We're done!

- With that, this application is complete

* You can now transition between the various views and see their counts
update

* In the past, you would have had to code these transitions manually

* Now the storyboard takes care of it for you while still allowing you to
pass information between view controllers via prepareForSegue:

- If you “quit” the app, you’ll see that its process simply moves to the
background; that’s because if you “relaunch” the app, you’ll see that the
counts have not been reset to zero

© Kenneth M. Anderson, 2012

33

Tab Bar Application

 Let’s see an example of using a storyboard to create a tab bar application
- A tab bar view controller is an example of a container controller

* It manages one view controller per tab and allows the user to switch
between them

- We’re going to go bare bones with this application and just create two tabs
that display simple view controllers that each have a label that helps to
distinguish one from the other

© Kenneth M. Anderson, 2012

34

Step One: Basic Set-Up

Create a Single View App and call it TabBar

Select the storyboard and add a new view controller

Put a label on the first view controller’s view that says “View Controller 1”
Put a label on the second view controller’s view that says “View Controller 2”
Select the first view controller and invoke the following menu command

« Editor = Embed In = Tab Bar Controller

A Tab Bar Controller is added and the first view controller has been
automatically configured to be its first tab (!)

* Your storyboard should now look similar to the next slide

© Kenneth M. Anderson, 2012

35

II

Tab Bar Controller

© Kenneth M. Anderson, 2012

View Controller 1

View Controller - Item

View Controller 2

View Controller

36

Step Two: Create Second Tab

Control-Click on the Tab Bar Controller and drag to the second view controller
Let go and a menu appears with more options than in our previous example

- In particular, there’s a new section called “Relationship Segue” and a
choice under that which says “view controllers”

Select the “view controllers” choice

 This essentially says that we’d like the second view controller to be one of
the view controllers managed by the tab bar controller

Presto! Just like that we have a Tab Bar app with two tabs

* If you run it, you can click on the two tabs to see your two view controllers
In action

© Kenneth M. Anderson, 2012 37

Step Three: Configure the Tabs

» The application works but the tabs themselves look horrible
* Let’s provide them with names and cool icons

 To do this, pick two icons from the APP BITS folder and drag them into your
XCode project

+ Using the same technique that we used to add the “text to speech”
framework to our XCode project

- | selected pacman@2x.png and scales@2x.png

- Now that the icons have been added to the project, click on each view
controller and near the bottom click on its tab icon

- Give each tab a name and an image using the Attributes inspector

© Kenneth M. Anderson, 2012 38

Step Four: There is No Step Four

« We’'re done!
« As you can see, it is straightforward to create a tab bar application

* Create a set of view controllers

Select one and embed it in a tab bar controller

Control drag from the tab bar controller to each view controller

Configure their tab icons and names

Work on the individual view controllers until the application is complete

© Kenneth M. Anderson, 2012

39

The Social

- Let’s create an a contact app that focuses on social media
- We’ll create a (very) simple model
- And then progressively add (not necessarily in this order)
A view that displays and edits this information
A table view that lists multiple contacts
* A nav controller that lets us move between these two views

- We’ll call this app “The Social” and we’ll start (as usual) with a single view app
that uses storyboards and automatic reference counting

© Kenneth M. Anderson, 2012 40

The Model (l)

- Our model class (ContactInfo) is going to be an objective-c class with the
following properties

* name - the name of a contact

» twitter - the contact’s twitter handle

- facebook - the contact’s facebook page

« e-mail - the contact’s boring old e-mail address

- To handle having multiple contacts, we’ll simply have one of our view
controllers store them in an NSMutableArray

© Kenneth M. Anderson, 2012

41

The Model (II)

9

10

11

12

13

14

15

16

17

18

19

#import <Foundation/Foundation.h>

@interface ContactInfo

@property (nonatomic,
@property (nonatomic,
@property (nonatomic,
@property (nonatomic,

@end

: NSObject

copy) NSString *name;
copy) NSString xtwitter;
copy) NSString xfacebook;
copy) NSString xemail;

- This is what a “dumb data holder” looks like in Objective-C; for this app,
we’re just going to store values in our model object; we can leave the .m file

for Contactinfo completely blank

© Kenneth M. Anderson, 2012

42

The Contact Detall View

* We need a view that will let us display and edit the information of a single
instance of Contactinfo

« We will create a ContactDetailViewController

- It will contain labels and textfields for each of the four properties of
Contactinfo

- It will have a ContactInfo property that it will use to retrieve the information
that it should display

* It will use the “button in the background” trick that we learned in lecture 16
to make the keyboard go away when we have finished editing a field

« We will not currently attempt to “save” our edits; we will handle that later

© Kenneth M. Anderson, 2012 43

Creating GontactDetailViewController

« We will now perform the following steps

« Use the “rename class” refactoring to change the name of the
automatically created CUViewController to ContactDetailViewController

- Add labels and textfields to our view in Interface Builder
- Add properties for each textfield using the “assistant editor” technique
- Add a property called info to the .h file of type Contactinfo*

- Add an implementation of viewWillLoad to the .m file that pulls values out
of the info property and places them into the widgets

- Create an instance of Contactlnfo in CUAppDelegate and pass it to our

root view controller (our ContactDetailViewController) so it has something
to display

© Kenneth M. Anderson, 2012

44

Final Interface for

Name ContactDetailViewController

Twitter Couple of Details

Facebook In attributes inspector, | configuread
the keyboard for Facelbook to be

Email of type URL and the keyboard for

Email to be of type Email Address

Also, note the invisible button that
IS positioned behind the labels and
textfields

© Kenneth M. Anderson, 2012 45

Header File for ContactDetailViewController

o/ #import <UIKit/UIKit.h>

10

1

—

@class ContactInfo;

12

1z @interface ContactDetailViewController : UIViewController

14

5 @property (nonatomic, strong) ContactInfo xinfoj;

16

17| @end

- All we need is a property to store a single instance of Contactinfo*

« Note use of @class to tell the compiler that ContactInfo is a class defined
somewhere else, without having to #import the whole class definition

© Kenneth M. Anderson, 2012 46

#import "ContactDetailViewController.h"

#import "ContactInfo.h"

@interface ContactDetailViewController ()

@property (weak,
@property (weak,
@property (weak,
| @property (weak,

@end

@implementation ContactDetailViewController

- (void)viewWillAppear: (BOOL)animated {

}
- (I
}
@end

[super viewWillAppear:animated];
self.nameField.text = self.info.name;
self.twitterField.text = self.info.twitter;
self.facebookField.text = self.info.facebook;
self.emailField.text = self.info.email;

BAction)dismissKeyboard: (UIButton *)sender {
[self.view endEditing:YES];

© Kenneth M. Anderson, 2012

Implementation File for
ContactDetailViewController

nonatomic) IBOutlet UITextField xnameField;
nonatomic) IBOutlet UITextField xtwitterField;
nonatomic) IBOutlet UITextField xfacebookField;
nonatomic) IBOutlet UITextField xemailField;

To initialize view, we
simply copy values from
our info property

Because we have
multiple text fields, we
use the endEditing:
method to dismiss the
keyboara

47

° #import “CUAppDelegate.h” Implementation File for
1| #import "ContactInfo.h" CUAppDelegate (for nOW)

2 #import "ContactDetailViewController.h"
v @implementation CUAppDelegate

s — (BOOL)application: (UIApplication x)application didFinishLaunchingWithOptions: (NSDictionary)
launchOptions {

ContactInfo xinfo = [[ContactInfo alloc] init];
info.name = @"Steve Martin"';
info.twitter = @"SteveMartinToGo";

info.facebook = @"http://www. facebook.com/SteveMartinofficial";
info.email = @"Steve.Martin@example.com";

ContactDetailViewController xvc = (ContactDetailViewController x)self.window.rootViewController;
vc.info = info;

27 return YES;
0 @end

When didFinishLaunchingWithOptions is invoked, we know that 1) our view
controller has been loaded and set as the rootViewController on our window
and 2) the user interface has NOT appeared on screen

S0, we create an instance of ContactInfo, retrieve our view controller, and set
its info property; We can now run the program and see our info displayed

© Kenneth M. Anderson, 2012 48

The ContactTableViewController

- We now need a view controller that presents a list of contacts
 In iOS a TableViewController is the most common way to present a list

+ It’s a bit of a misnomer because TableViewControllers can only handle a
single column of information

- However, you can have as many rows as you want!
 TableViews rely on two roles
- a data source (to provide the data it needs)
- a delegate (to handle events on the table view)

» These two roles are typically played by a single object: the
TableViewController

© Kenneth M. Anderson, 2012 49

Creating ContactTableViewController (l)

- In our storyboard, drag out a table view controller object (see next slide)

* These are interesting beasts

« A table view controller contains a table view which contain table view
cells

- In Interface Builder, you use the table view cells to define “prototype”

rows that your application can then use to populate your table view at
runtime

- if you add additional cells in Interface Builder you’re saying that your
table view can display more than one type of row

« We’'re going to use just one prototype cell and we’re going to
configure it to use the “Subtitle” style and have an identifier of “Cell”

© Kenneth M. Anderson, 2012

50

Table View Controller Scene

v () Table View Controller ||~ FECSSSEES o _
¥V Table View ——— e

@) First Responder Subtitle

Exit

Contact Detail View Controller Scene

» () Contact Detail View Controller
@) First Responder
Exit

Creating ContactTableViewController (lI)

Now, we add a new file to our project named ContactTableViewController
- It will be a subclass of UlTableViewController

Once we have this file, we need to switch back to the storyboard, select our
table view controller object and use the lIdentity Inspector to change its type
to ContactTableViewController

We now drag the arrow in our storyboard that indicates which view controller
Is “root” and point it at the table view controller

- Then, we comment out the code in CUAppDelegate since
ContactDetailViewController is no longer “root” and that code would now
crash at run-time

If you run the application, you’ll be presented with a completely empty table
view; so, we need to add data

© Kenneth M. Anderson, 2012

52

Steps to add data

- We will first make sure that our table view has some data to display

- We will add a NSMutableArray property called contacts and initialize this
array with two entries in the table view controller’s viewDidLoad method

- See example code for details

* Now, to get these contacts to display in the table view we need to implement
the following methods

 numberOfSectionsinTableView
 numberOfRowsInSection
« cellForRowAtindexPath

« These methods are part of the “data source” protocol and are called to find
out how much data to display in the table

© Kenneth M. Anderson, 2012 53

7w — (NSInteger)numberOfSectionsInTableView: (UITableView x)tableView {
return 1;

n — (NSInteger)tableView: (UITableView x)tableView numberOfRowsInSection: (NSInteger)section {
75 return [self.contacts countl;

7w — (UITableViewCell x)tableView: (UITableView x)tableView cellForRowAtIndexPath: (NSIndexPath)
indexPath {
static NSString *Cellldentifier = @"Cell";

UITableViewCell xcell = [tableView dequeueReusableCellWithIdentifier:Cellldentifier
forIndexPath:indexPath];

ContactInfo xinfo = [self.contacts objectAtIndex:indexPath.row];

cell.textLabel.text: = info.name;

return cell;

This is the relevant code; We have only 1 section. In that section, the number of rows is
equal to the number of contacts.

The most complicated method is cellForRowAtindexPath; We ask the table view for an
instance of our “Cell” prototype. We then use the “row” property of the indexPath to
retrieve a Contactinfo from contacts. We then configure the cell with information from

that particular contact. This method is called once per row of the table.
© Kenneth M. Anderson, 2012 54

Carrier 2@

Steve Martin

Steve.Martin@example.com

Wierd Al Yankovich

Wierd.Al@example.com

Not bad for a few lines of code!

Here we can see that the table view has created
two rows and its display the name and e-malll
address of our two contacts

| et’s connect this table view to the
ContactDetailViewController

We need to create a modal segue for now with
an identifier of “Show Details”; we’ll switch to a
push segue once we add our navigation
controller

We will implement preparefForSegue to pass the

selected row’s contact information to the
ContactDetailViewController

© Kenneth M. Anderson, 2012 55

w3 — (void)prepareForSegue: (UIStoryboardSegue x)segue sender: (id)sender {

14t if ([seque.identifier isEqualToString:@"Show Details"]) {

145 ContactDetailViewController xvc = (ContactDetailViewController)
seqgue.destinationViewController;

146

147 NSIndexPath xindex = [self.tableView indexPathForCell:sender];
148

149 ContactInfo xinfo = [self.contacts objectAtIndex:index.row];
150

151 vC.1info = info;

152 }

153 }

After configuring the segue in Interface Builder, the prepareForSegue code
looks like this

We make sure that the segue is the “Show Details” segue
We retrieve the destination view controller and cast it to the type we need
We ask the sender (our table cell) for its indexPath. \We then use its “row”

property to retrieve our contact and assign it to the retrieved view
controller

© Kenneth M. Anderson, 2012 56

Current Status

- If you run the application, you can now click on a table row and see the
ContactDetailViewController slide into place

- |In addition, the ContactDetailViewController is filled with the appropriate
information because we set its info property with the correct contact

- But, we have no overall navigation scheme in place
* There is no way to return to the table view in the current set up

- S0, now we are going to add a Navigation Controller to handle moving back
and forth between the table view and the detail view

© Kenneth M. Anderson, 2012

57

—mbed in Navigation Controller

+ Select the Table View in the storyboard and invoke the menu command

- Editor = Embed In = Navigation Controller

» Interface Builder does the following
* It creates a navigation controller
* Makes it the root view controller
* And sets the table view controllers as its initial view

- We can now go to our “Show Details” segue and convert it to a Push segue
rather than a modal segue

* Run the app and enjoy effortless navigation between our table view and
detail view!

© Kenneth M. Anderson, 2012

58

Polishing the App ()

Right now, our views when displayed in the navigation controller have no
titles

- If we set our two view controllers to have titles the app will look more
polished

Setting the title for the table view is easy

+ Select it in the storyboard, double click its top navigation bar and type in
the title “Contacts”; You can run the app to see this change take effect

To set the title for our detail view, we have to add this line of code in the
viewWillAppear method of ContactDetailViewController

- self.title = self.info.name;

Run the app and check out both rows of the table in detail view

© Kenneth M. Anderson, 2012

59

Polishing the App (I)

* The last thing we need to do is to save our edits such that they persist

 Right now if you change anything in the detail view, those changes are
discarded

- The reason? We copied values from the model object into the widgets
but we never copy those values back

» To do that, we will add a viewDidDisappear: method to our
ContactDetailViewController and copy all of the values out of the
widgets and into the model object

» If you run the app and change a contact’s name and e-mail address,
you will see that 1) the changes do not show up in the table but 2) the

changes are made; if you reselect that contact, you’ll see your changes
In the detall view

© Kenneth M. Anderson, 2012 60

Polishing the App (Il)

* S0, now, all that we need to do to “complete” the app is to notify the table
view that the contact info has changed and so it needs to reload the table
rows

- To do that, I’'m going to add a property to ContactDetailViewController that
will store a reference back to the Table View controller; we’ll set this property
in prepareForSegue:

« We’ll make that reference “weak” since we don’t own the table view
controller

* In viewDidDisappear we will use this reference to call a method that will
reload the table

- Any changes to name and/or e-mail address will now be displayed

« See sample code for details

© Kenneth M. Anderson, 2012 61

Are we done?

* No
- We need to add the ability to create new contacts

 But we don’t have time for that in this lecture!

© Kenneth M. Anderson, 2012

62

Wrapping Up

- Today we covered the following topics
- Fundamentals of storyboards and view controllers
« Container Controllers
- Tab Bar controllers and Navigation Controllers
- And how to use them inside of storyboards
 Table View Controllers
- How to display data in them via model objects

- How to pass a model object to a detailed view controller using segues

© Kenneth M. Anderson, 2012 63

Coming Up Next

« Lecture 18: Intermediate Android
« Homework 4 will be released
* It’s the first step in the semester project

« it will be due at the start of week 11

© Kenneth M. Anderson, 2012

64

