
© Kenneth M. Anderson, 2012

Introduction To Objective-C

CSCI 4448/5448: Object-Oriented Analysis & Design
Lecture 13 — 10/09/2012

1

© Kenneth M. Anderson, 2012

Goals of the Lecture

• Present an introduction to Objective-C

• As implemented by the Apple LLVM Compiler 4.0 (a.k.a. Clang)

• Coverage of the language will be INCOMPLETE

• We’ll see the basics… there is a lot more to learn

• There is a nice Objective-C tutorial located here:

• http://cocoadevcentral.com/d/learn_objectivec/

• although everything it says about memory management is now obsolete (!)

2

http://llvm.org
http://llvm.org
http://cocoadevcentral.com/d/learn_objectivec/
http://cocoadevcentral.com/d/learn_objectivec/

© Kenneth M. Anderson, 2012

History (I)

• Brad Cox created Objective-C in the early 1980s

• It was his attempt to add object-oriented programming concepts to the C
programming language

• NeXT Computer licensed the language in 1988;

• it was used to develop the NeXTSTEP operating system, programming
libraries and applications for NeXT

• In 1993, NeXT worked with Sun to create OpenStep, an open specification
of NeXTSTEP on Sun hardware

3

© Kenneth M. Anderson, 2012

History (II)

• In 1997, Apple purchased NeXT and transformed NeXTSTEP into MacOS X
which was first released in the summer of 2000

• Objective-C has been one of the primary ways to develop applications for
OS X for the past 12 years

• In 2008, it became the primary way to develop applications for iOS targeting
(currently) the iPhone and the iPad and (perhaps in the future) the Apple TV

4

© Kenneth M. Anderson, 2012

Objective-C is “C plus Objects” (I)

• Objective-C makes a small set of extensions to C which turn it into an object-
oriented language

• It is used with two object-oriented frameworks

• The Foundation framework contains classes for basic concepts such as
strings, arrays and other data structures and provides classes to interact
with the underlying operating system

• The AppKit contains classes for developing applications and for creating
windows, buttons and other widgets

5

© Kenneth M. Anderson, 2012

Objective-C is “C plus Objects” (II)

• Together, Foundation and AppKit are called Cocoa

• On iOS, AppKit is replaced by UIKit

• Foundation and UIKit are called Cocoa touch

• In this lecture, we focus on the Objective-C language,

• we’ll see a few examples of the Foundation framework

• we’ll see examples of UIKit in Lecture 16 when I introduce the iOS
framework

6

© Kenneth M. Anderson, 2012

C Skills? Highly relevant

• Since Objective-C is “C plus objects” any skills you have in the C language
directly apply

• statements, data types, structs, functions, etc.

• What the OO additions do, is reduce your need on

• structs, malloc, and dealloc

• indeed with automatic reference counting, memory management is no
longer a primary concern

• and enable all of the object-oriented concepts we’ve been discussing

• Objective-C and C code otherwise freely intermix

7

© Kenneth M. Anderson, 2012

Development Tools (I)

• Apple’s XCode is used to develop in Objective-C

• Behind the scenes, XCode makes use of Apple’s Clang compiler to
compile Objective-C programs

• LLVM is a virtual machine targeted by Clang)

• It represents a single unified environment to create both the code and the UI
for OS X and iOS apps

8

http://developer.apple.com/technologies/tools/
http://developer.apple.com/technologies/tools/

© Kenneth M. Anderson, 2012

Development Tools (II)

• XCode is available on the Mac App Store

• It is “free” for users of OS X Lion and OS X Mountain Lion

• Mountain Lion costs $20

• Clicking Install in the App Store downloads XCode to Applications

• On first launch, XCode will then download additional libraries that it needs

• You can also go into the preferences and install its command-line tools
to gain access to the clang and gcc compilers in the terminal

9

© Kenneth M. Anderson, 2012

Hello World

• As is traditional, let’s look at our first objective-c program via the traditional
Hello World example

• To create it, we launch XCode and create a New Project

• select Application under the MacOS X

• select Command Line Tool on the right (click Next)

• select Foundation and type “Hello World” (click Next)

• select a directory, select checkbox for git (click Finish)

10

© Kenneth M. Anderson, 2012 11

Step One

© Kenneth M. Anderson, 2012 12

Step Two

© Kenneth M. Anderson, 2012 13

Step Three

© Kenneth M. Anderson, 2012 14

Similar to what we saw with
Eclipse, XCode creates a default
project for us;

There are folders for this
program’s source code (main.m),
frameworks, and products (the
application itself)

Note: the Foundation framework
is front and center and HelloWorld
is shown in red because it hasn’t
been created yet

© Kenneth M. Anderson, 2012

The template is ready to run; clicking “Run” brings up a console that
shows “Hello, World!” being displayed;

Exciting, isn’t it?

One thing to note is that this console is also where the debugger will
display its controls if a breakpoint is encountered at run-time.

XCode previously made use of gcc and gdb by default for compiling and
debugging programs (respectively). Apple has now switched to using
clang and the clang debugger by default.

15

© Kenneth M. Anderson, 2012 16

The code for the program is not too surprising. It’s a C function with two
Objective-C extensions. The “@” sign is usually a good indication that you’re
looking at an Objective-C extension to the core C programming language.

@autoreleasepool is a no-op since we turned automatic reference counting on
when we created the project. In the past, it played an important role in memory
management. For now, you can ignore it.

NSLog() is a C function. It acts like printf, but adds information (timestamp and
process info) to it’s output.

© Kenneth M. Anderson, 2012 17

Note: after we built and ran the
program, the HelloWorld product is
no longer listed in red. It has
actually been built and lives
(somewhere) in the file system.

(We’ll find out where in a moment.)

Also notice that an “M” has appeared next to main.m after I edited it to get
rid of an auto-generated comment and to reduce the amount of whitespace
used by the function. (I’ll show these edits during my demo.)

The M is an aspect of XCode’s git integration. It’s telling me that the file was
modified and that (eventually) I can check these changes into the git
repository that XCode automatically created for me. I won’t be discussing
the git integration further; I just wanted you to know it was there.

© Kenneth M. Anderson, 2012 18

The resulting project structure on disk does not map completely to what is
shown in Xcode; The source file, man page, and pre-compiled header file
are all stored in a sub-directory of the main directory.

The project file HelloWorld.xcodeproj is stored in the main directory. It is the
file that keeps track of all project settings and the location of project files.

XCode project directories are a lot simpler now that files generated during a
build are stored elsewhere.

© Kenneth M. Anderson, 2012 19

Where is the actual application?

• After you ran the application, HelloWorld switched from being displayed in red
to being displayed in black

• You can right click on HelloWorld and select “Show in Finder” to see where
XCode placed the actual executable

• By default, XCode creates a directory for your project in

• ~/Library/Developer/XCode/DerivedData

• For HelloWorld, XCode generated 22 directories containing 38 files!

• This is where XCode stores all the information it needs to recompile your
project as fast as possible (pre-compiled headers, etc.) as well as where it
stores it’s log files, full-text index (for fast search), and the like

© Kenneth M. Anderson, 2012 20

The resulting executable can be executed from the command line,
fulfilling the promise that we were creating a command-line tool

Note the “2012-10-04 09:42:47.146 HelloWorld[6151:707]” is
generated by NSLog()

© Kenneth M. Anderson, 2012 21

Returning to the code, we can see that:

Objective-C programs start with a function called main, just like C programs.

#import is similar to C’s #include except it ensures that header files are included
once and only once

Thus our program calls a function, NSLog, and returns 0

Let’s add a breakpoint at the call to NSLog().

© Kenneth M. Anderson, 2012 22

We add a breakpoint, by clicking on the line numbers listed on the left hand side of
the source code file.

Here, we have added a breakpoint to line 14.

To disable the breakpoint, click on it.

To delete the breakpoint, drag it off the numbers and let go.

© Kenneth M. Anderson, 2012 23

Now, when we run the program, we stop at the breakpoint in the debugger (lldb). This
debugger is similar to gdb. Here you can see that I examined the contents of local
variables on the left and then printed those same values out in the debugger on the right.
The (small) buttons on the left give you standard “step-by-step” debugging controls.

© Kenneth M. Anderson, 2012 24

Let’s add objects…

• Note: This example comes from “Learning Objective-C 2.0: A Hands-On
Guide to Objective-C for Mac and iOS Developers” written by Robert Clair

• It is an excellent book that I highly recommend

• His review of the C language is an excellent bonus to the content on
Objective-C itself

• I also recommend “Objective-C Programming: The Big Nerd Ranch Guide”
by Aaron Hillegass

• We’re going to create an Objective-C class called Greeter to make this
HelloWorld program a bit more object-oriented

© Kenneth M. Anderson, 2012

First, we are going to add a class

• Select File ⇒ New File

• In the resulting Dialog (see next three slides)

• Select Cocoa Class under Mac OS X

• Select Objective-C class (click Next)

• Name your new class “Greeter”

• Select NSObject as your superclass (click Next)

• Make sure file is called “Greeter.m” add to HelloWorld Group and
HelloWorld Target. (Click Create.)

25

© Kenneth M. Anderson, 2012 26

Step One

© Kenneth M. Anderson, 2012 27

Step Two

© Kenneth M. Anderson, 2012 28

Step Three

© Kenneth M. Anderson, 2012 29

Greeter.h and Greeter.m are added to our project. (The “A” next to their
names is a “git annotation” meaning that git has detected the two new files.)

Objective-C classes are split between a header file and an implementation
file. The “.m” suffix refers to the letter ‘m’ in ‘iMplementation’.

All method definitions will be inserted between the @implementation keyword
and the @end keyword. The “@” symbol once again alerts us to the fact that
we’re looking at Objective-C language constructs.

© Kenneth M. Anderson, 2012 30

• Classes in Objective-C are defined in two files

• A header file which defines the properties (instance variables on steriods)
and method signatures of the class

• We’ll discuss properties in more details soon

• An implementation file (.m) that provides the method bodies

Objective-C classes

© Kenneth M. Anderson, 2012

Header Files

• The header file of an Objective-C class traditionally has the following structure

<import statements>

@interface <classname> : <superclass name> {

 <attribute definitions>

}

<method signature definitions>

@end

31

© Kenneth M. Anderson, 2012

Header Files

• With more recent versions of Objective-C (sometimes called Objective-C 2.0),
the structure has changed to the following

<import statements>

@interface <classname> : <superclass name>

 <property definitions>

 <method signature definitions>

@end

• Note: the previous structure is still supported

32

© Kenneth M. Anderson, 2012

What’s the difference?

• In Objective-C 2.0, the need for defining the attributes of a class has been
greatly reduced due to the addition of properties

• When you declare a property, you automatically get

• an attribute (i.e. instance variable)

• a getter method

• and a setter method

• synthesized (automatically added) for you

33

© Kenneth M. Anderson, 2012

New Style

• In this class, I’ll be using the new style promoted by Objective-C 2.0

• Occasionally we may run into code that uses the old style, I’ll explain the
old style when we encounter it

34

© Kenneth M. Anderson, 2012

Objective-C additions to C (I)

• Besides the very useful #import, the best way to spot an addition to C by
Objective-C is the presence of this symbol

• @

35

© Kenneth M. Anderson, 2012

Objective-C additions to C (II)

• In header files, the two key additions from Objective-C are

• @interface

• and

• @end

• @interface is used to define a new objective-c class

• As we saw, you provide the class name and its superclass; Objective-C is
a single inheritance language

• @end does what it says, ending the @interface compiler directive

36

© Kenneth M. Anderson, 2012

Greeter’s interface (I)

37

We’ve added one property called greeting. It’s type is “NSString *” which can be
read as “an instance of NSString” or “a pointer to an NSString”
We’ve added one method called “greet”. It has no parameters and it’s return
type is “void”.
“NS” refers to NextStep; NeXT lives on!

© Kenneth M. Anderson, 2012

Objective-C Properties (I)

38

• An Objective-C property helps to define the public interface of an Objective-C
class

• It defines an instance variable, a getter and a setter all in one go

@property (nonatomic, copy) NSString* greeting;

• “nonatomic” tells the runtime that this property will never be accessed by
more than one thread (use “atomic” otherwise)

• “copy” tells the automatic reference counting system that when we get a new
value for this property that we should store a copy of it and that when we
return this value, we should return a copy

• this protects our instance of the string from manipulation by other
objects

© Kenneth M. Anderson, 2012

Objective-C Properties (II)

39

• @property (nonatomic, copy) NSString* greeting;

• After the property attributes (in this case nonatomic and copy), the type of the
property is specified and finally the property’s name

• A property can be of any C or Objective-C type

• although they are primarily used with Objective-C classes and
(sometimes) primitive types such as int, long, and the like

© Kenneth M. Anderson, 2012

Objective-C Properties (III)

40

• @property (nonatomic, copy) NSString* greeting;

• If you have an instance of Greeter

• Greeter* ken = [[Greeter alloc] init];

• You can assign the property using dot notation

• ken.greeting = @“Say Hello, Ken”;

• You can retrieve the property also using dot notation

• NSString* theGreeting = ken.greeting;

© Kenneth M. Anderson, 2012

Objective-C Properties (IV)

41

• Dot notation is simply “syntactic sugar” for calling the automatically
generated getter and setter methods

• NSString* theGreeting = ken.greeting;

• is equivalent to

• NSString* theGreeting = [ken greeting];

• The above is a call to a method that is defined as

• - (NSString*) greeting;

© Kenneth M. Anderson, 2012

Objective-C Properties (V)

42

• Dot notation is simply “syntactic sugar” for calling the automatically
generated getter and setter methods

• ken.greeting = @“Say Hello, Ken”;

• is equivalent to

• [ken setGreeting:@”Say Hello, Ken”];

• The above is a call to a method that is defined as

• - (void) setGreeting:(NSString*) newGreeting;

© Kenneth M. Anderson, 2012

Objective-C Methods (I)

43

• It takes a while to get use to Object-C method signatures

• - (void) setGreeting: (NSString*) newGreeting;

• defines an instance method (-) called setGreeting:

• The colon signifies that the method has one parameter and is PART OF THE
METHOD NAME

• In this case, the parameter’s name is

• newGreeting

• and it’s type is NSString*

• Thus, the method names setGreeting: and setGreeting refer to TWO different
methods

• the former has one parameter; the latter has no parameters

© Kenneth M. Anderson, 2012

Objective-C Methods (II)

• A method with multiple parameters will have multiple colon characters and
the parameter definitions are interspersed with the method name

• - (void) setStrokeColor: (NSColor*) strokeColor

• andFillColor: (NSColor*) fillColor;

• The above signature defines a method whose name is

• setStrokeColor:andFillColor:

• The two parameters are called

• strokeColor and fillColor

• and they are both of type NSColor*

44

© Kenneth M. Anderson, 2012

NSString * and NSColor *

• We’ve now seen examples of types

• NSString * and NSColor *

• What does this mean?

• The * in C means “pointer”

• Thus, this can be read as

• “pointer to <class>”

• it simply means an instance has been allocated and we have a pointer
to the instance

45

© Kenneth M. Anderson, 2012

Let’s implement the method bodies

• The implementation file of a class looks like this

<import statements>

<optional class extension>

@implementation <classname>

 <method body definitions>

@end

• Let’s ignore the “optional class extension” part for now

46

© Kenneth M. Anderson, 2012

Greeter’s implementation (I)

47

High-Level Overview

1. #import of header file

2. Creation of property via the
@synthesize statement

3. Definition of constructor (init)

4. Implementation of the greet
method

© Kenneth M. Anderson, 2012

Greeter’s implementation (I)

48

High-Level Overview

1. #import of header file

2. Creation of property via the
@synthesize statement

3. Definition of constructor (init)

4. Implementation of the greet
method

© Kenneth M. Anderson, 2012

Greeter’s implementation (II)

49

The @synthesize statement causes
the compiler to:

1. Create an instance variable called
_greeting of the appropriate type

2. Generate the setter method called
setGreeting:

3. Generate the getter method called
greeting

We prefix the instance variable name
with an underscore to help
distinguish it from the property name

© Kenneth M. Anderson, 2012

Greeter’s implementation (III)

50

Objective-C constructors follow a
standard pattern.

1. We call the constructor of the
superclass.

2. We make sure we get back a valid
(non-zero) object.

3. If so, we initialize our properties.

4. We then return the allocated
object.

If the call to [super init] fails, it returns
“nil” which is what we then return

© Kenneth M. Anderson, 2012

Greeter’s implementation (IV)

51

The implementation of the greet method
is straightforward.

We simply print our greeting to standard
out using the NSLog() function.

NSLog() is similar to C’s printf() function.
It can take any number of arguments,
one for each placeholder in its format
string.

%@ means “Objective-C object”; The
specific object has its description
method called. This method is similar to
Java’s toString() method.

Note: %s, %d, %f, etc. are all
supported by NSLog().

© Kenneth M. Anderson, 2012

Calling methods (I)

52

• The method invocation syntax of Objective-C is

• [object method:arg1 method:arg2 …];

• Method calls are enclosed by square brackets

• Inside the brackets, you list the object being called (the receiver)

• Then the method name plugging in any arguments required by the
methods parameters

• similar to the method definition, you split on the “:” in the method name
in order to deliver the parameter in-line

© Kenneth M. Anderson, 2012

Calling Methods (II)

53

• Here’s a call using the setter method for the greeting property; @“Howdy!” is
a shorthand syntax for creating an NSString instance

• [greeter setGreeting: @“Howdy!”];

• Here’s a call to the same method where we get the greeting from some other
Greeter object

• [greeterOne setGreeting:[greeterTwo greeting]];

• Above we nested one call inside another; now a call with multiple args

• [rectangle setStrokeColor: [NSColor red] andFillColor: [NSColor green]];

© Kenneth M. Anderson, 2012

Memory Management (I)

• Memory management of Objective-C objects used to involve the use of six
methods

• alloc, init, dealloc, retain, release, autorelease

• In Objective-C 2.0, a garbage collector was added which turned retain,
release, and autorelease into no-ops

• The garbage collector could be used on the Mac but not on iOS

• In the most recent versions of Objective-C and XCode, the garbage collector
has gone the way of the Dodo

• (alas, Garbage Collector, we hardly knew ye!)

• and has been replaced with automatic reference counting (it’s more efficient)

• which does everything for you behind the scenes!

54

© Kenneth M. Anderson, 2012

Memory Management (II)

• That said, you still need to

• define your constructors

• you have to show how to initialize your properties

• and init is a good place to do other types of initialization

• such as establishing database connections or registering interest in a
notification, etc.

• occasionally override dealloc

• not to handle memory-management concerns (which ARC does for you)

• but to handle things like closing database connections and deregistering
interest in a notification, etc.

55

© Kenneth M. Anderson, 2012

A new main method

• We now need a new version of main to make use of our new Greeter class

• We’ll import its header file

• We’ll instantiate an instance of the class

• We’ll call its greet method (to confirm that the constructor worked)

• We’ll set its greeting property to something different

• We’ll call its greet method again

• We don’t have to worry about deallocating the greeter object.

• ARC will take care of that for us

56

© Kenneth M. Anderson, 2012 57

© Kenneth M. Anderson, 2012 58

Some things not (yet) discussed

• Objective-C has a few additions to C not yet discussed

• The type id: id is defined as a pointer to an object

• id iCanPointAtAString = @“Hello”;

• Note: no need for an asterisk in this case

• The keyword nil: nil is a pointer to no object

• It is similar to Java’s null

• The type BOOL: BOOL is a boolean type with values YES and NO; used
throughout the Cocoa frameworks

© Kenneth M. Anderson, 2012

Wrapping Up (I)

• Basic introduction to Objective-C

• main methods

• class and method definition and implementation

• method calling syntax

• creation and use of objects

• More to come as we use this knowledge to explore the iOS platform in future
lectures

59

© Kenneth M. Anderson, 2012

Coming Up Next

• Lecture 14: Review for Midterm

• Lecture 15: Midterm

• Lecture 16: Introduction to iOS

60

