
© Kenneth M. Anderson, 2012

Facade & Adapter

CSCI 4448/5448: Object-Oriented Analysis & Design
Lecture 8 — 09/20/2012

1

© Kenneth M. Anderson, 2012

Goals of the Lecture

• Introduce two design patterns

• Facade

• Adapter

• Compare and contrast the two patterns

2

© Kenneth M. Anderson, 2012

Facade (I)

• “Provide a unified interface to a set of interfaces in a subsystem. Facade
defines a higher-level interface that makes the subsystem easier to use.”

• Design Patterns, Gang of Four, 1995

• There can be significant benefit in wrapping a complex subsystem with a
simplified interface

• If you don’t need the advanced functionality or fine-grained control of the
former, the latter makes life easy

3

© Kenneth M. Anderson, 2012

Client Facade

4

Facade Pattern: Structure

© Kenneth M. Anderson, 2012

Facade (II)

• Facade works best when you are accessing a subset of the subsystem’s
functionality

• You can also add new features by adding it to the Facade (not the
subsystem); you still get a simpler interface

• Facade not only reduces the number of methods you are dealing with but
also the number of classes

• Imagine having to pull Employees out of Divisions that come from
Companies that you pull from a Database

• A Facade in this situation can fetch Employees directly

5

© Kenneth M. Anderson, 2012

Example (Without a Facade)

6

Database Company

Division

Employee

Client

Without a Facade, Client
contacts the Database to
retrieve Company objects.
It then retrieves Division
objects from them and
finally gains access to
Employee objects.

It uses four classes.

© Kenneth M. Anderson, 2012

Example (With a Facade)

7

With a Facade, the Client is
shielded from most of the
classes. It uses the
Database Facade to
retrieve Employee objects
directly.

Employee

Client

find(name): Employee
Database Facade

© Kenneth M. Anderson, 2012

Real World Example: Core Audio

8

• Consider Core Audio, included in iOS

• If you want to access that subsystem directly, you have up to 8
frameworks that you need to deal with

• AudioToolbox, AudioUnit, AVFoundation, CoreAudio, CoreAudioKit,
CoreMIDI, CoreMIDIServer & OpenAL

• However, if all you need to do is play a sound, you can use a single class,
AVAudioPlayer, which acts as a Facade

© Kenneth M. Anderson, 2012

Facade Example (I)

• Imagine a library of classes with a complex interface and/or complex
interrelationships

• Home Theater System

• Amplifier, DvdPlayer, Projector, CdPlayer, Tuner, Screen,
PopcornPopper (!), and TheatreLights

• each with its own interface and interclass dependencies

9

© Kenneth M. Anderson, 2012

Facade Example (II)

• Imagine steps for “watch movie”

• turn on popper, make popcorn, dim lights, screen down, projector on, set
projector to DVD, amplifier on, set amplifier to DVD, DVD on, etc.

• Now imagine resetting everything after the movie is done, or configuring the
system to play a CD, or play a video game, etc.

10

© Kenneth M. Anderson, 2012

Facade Example (III)

• For this example, we can place high level methods...

• like “watch movie”, “reset system”, “play cd”

• ... in a facade object and encode all of the steps for each high level service in
the facade; Demo

• Client code is simplified and dependencies are reduced

• A facade not only simplifies an interface, it decouples a client from a
subsystem of components

• Indeed, Facade lets us encapsulate subsystems, hiding them from the rest
of the system

11

© Kenneth M. Anderson, 2012

Adapters in the Real World

• Our next pattern provides steps for converting an incompatible interface with
an existing system into a different interface that is compatible

• Real World Example: AC Power Adapters

• Electronic products made for the USA cannot be used directly with outlets
found in most other parts of the world

• To use these products outside the US, you need an AC power adapter

• In some case, you also need a AC power transformer/converter

• which is a separate, orthogonal issue

• but these issues are sometimes conflated

12

© Kenneth M. Anderson, 2012

OO Adapters (I)

• Pre-Condition: You are maintaining an existing system that makes use of a
third-party class library from vendor A

• Stimulus: Vendor A goes belly up and corporate policy does not allow you to
make use of an unsupported class library.

• Response: Vendor B provides a similar class library but its interface is
completely different from the interface provided by vendor A

• Assumptions: You don’t want to change your code, and you can’t change
vendor B’s code.

• Solution?: Write new code that adapts vendor B’s interface to the interface
expected by your original code

13

© Kenneth M. Anderson, 2012

Existing
System

Vendor
B

Class
Library

Interface Mismatch
Need Adapter

Adapter

Create Adapter

And then...

14

OO Adapters (II)

© Kenneth M. Anderson, 2012

Vendor
B

Class
Library

OO Adapters (III)

Adapter
Existing
System

...plug it in

Benefit: Existing system and new vendor library do not change, new code is
isolated within the adapter.

15

© Kenneth M. Anderson, 2012

Example: A turkey amongst ducks! (I)

• If it walks like a duck and quacks like a duck, then it must be a duck!

16

Or...

© Kenneth M. Anderson, 2012

Example: A turkey amongst ducks! (II)

• If it walks like a duck and quacks like a duck, then it must might be a duck
turkey wrapped with a duck adapter… (!)

17

© Kenneth M. Anderson, 2012

Example: A turkey amongst ducks! (III)

• Recall the Duck simulator from last lecture?

public interface Duck {1

 public void quack();2

 public void fly();3

}4

5

public class MallardDuck implements Duck {6

7

 public void quack() {8

 System.out.println("Quack");9

 }10

 11

 public void fly() {12

 System.out.println("I'm flying");13

 }14

}15

16

18

© Kenneth M. Anderson, 2012

Example: A turkey amongst ducks! (IV)

• An interloper wants to invade the simulator

public interface Turkey {1

 public void gobble();2

 public void fly();3

}4

5

public class WildTurkey implements Turkey {6

7

 public void gobble() {8

 System.out.println("Gobble Gobble");9

 }10

 11

 public void fly() {12

 System.out.println("I'm flying a short distance");13

 }14

 15

}16

17

19

© Kenneth M. Anderson, 2012

Example: A turkey amongst ducks! (V)

• Write an adapter, that makes a turkey look like a duck

public class TurkeyAdapter implements Duck {1

2

 private Turkey turkey;3

 4

 public TurkeyAdapter(Turkey turkey) {5

 this.turkey = turkey;6

 }7

 8

 public void quack() {9

 turkey.gobble();10

 }11

 12

 public void fly() {13

 for (int i = 0; i < 5; i++) {14

 turkey.fly();15

 }16

 }17

 18

}19

20

1. Adapter implements target
interface (Duck).

2. Adaptee (turkey) is passed via
constructor and stored internally

3. Calls by client code are delegated
to the appropriate methods in the
adaptee

4. Adapter is full-fledged class,
could contain additional vars and
methods to get its job done; can be
used polymorphically as a Duck

Demonstration
20

© Kenneth M. Anderson, 2012

Adapter Pattern: Definition

• The Adapter pattern converts the interface of a class into another interface
that clients expect. Adapter lets classes work together that couldn’t otherwise
because of incompatible interfaces

• The client makes a request on the adapter by invoking a method from the
target interface on it

• The adapter translates that request into one or more calls on the adaptee
using the adaptee interface

• The client receives the results of the call and never knows there is an
adapter doing the translation

21

© Kenneth M. Anderson, 2012

Adapter Pattern: Structure (I)

Object Adapter
Client

request()

Target
«interface»

request()
Adapter

specificRequest()
Adaptee

adaptee.specificRequest()

1. Client codes to an
interface, not an
implementation. Allows
creation of multiple adapter
classes, if needed.

2. Adapter makes use of
delegation to access the
behavior of Adaptee. We can
pass any subclass of Adaptee
to the Adapter, if needed.

22

© Kenneth M. Anderson, 2012

Adapter Pattern: Structure (II)

Class Adapter

Client
request()

Target

request()
Adapter

specificRequest()
Adaptee

adaptee.specificRequest()

1. Requires use of multiple
inheritance, but now adapter
does not need to re-implement
target and/or adaptee behavior.

It simply overrides or inherits
that behavior instead.

Demonstration
23

© Kenneth M. Anderson, 2012

Comparison (I)

24

• To many people, these two patterns (Adaptor/Facade) appear to be similar

• They both act as wrappers of a preexisting class

• They both take an interface that we don’t want and convert it to an
interface that we can use

• With Facade, the intent is to simplify the existing interface

• With Adapter, we have a target interface that we are converting to

• In addition, we often want the adapter to plug into an existing framework
and behave polymorphically

© Kenneth M. Anderson, 2012

Comparison (II)

• Superficial difference

• Facade hides many classes; Adapter hides only one

• But

• a Facade can simplify a single, very complex object

• an adapter can wrap multiple objects at once in order to access all the
functionality it needs

• The key is simplify (facade) vs convert (adapter)

25

© Kenneth M. Anderson, 2012

Multiple Inheritance

• Let’s talk a little bit more about multiple inheritance

• Some material for this section taken from

• Object-Oriented Design Heuristics by Arthur J. Riel

• Copyright © 1999 by Addison Wesley

• ISBN: 0-201-63385-X

26

© Kenneth M. Anderson, 2012 27

Multiple Inheritance

• Riel does not advocate the use of multiple inheritance (its too easy to misuse
it). As such, his first heuristic is

• If you have an example of multiple inheritance in your design, assume
you have made a mistake and prove otherwise!

• Most common mistake

• Using multiple inheritance in place of containment

• That is, you need the services of a List to complete a task

• Rather than creating an instance of a List internally, you instead use
multiple inheritance to inherit from your semantic superclass as well
as from List to gain direct access to List’s methods

• You can then invoke List’s methods directly and complete the task

© Kenneth M. Anderson, 2012

Animal

location

food type

roam()

eat()

makeNoise()

Hippo

eat()

makeNoise()

submerge()

List

head

elements

findElement()

removeElement()

addElement()

Inheriting from List in this way is bad, because
“Hippo IS-A List” is FALSE

A Hippo is NOT a special type of List

Instead...

28

Graphically

© Kenneth M. Anderson, 2012

Do This

What’s the Difference?

Animal

location

food type

roam()

eat()

makeNoise()

Hippo

eat()

makeNoise()

submerge()

List

head

elements

findElement()

removeElement()

addElement()

29

© Kenneth M. Anderson, 2012

Another Problem

C

A

B

D

What’s wrong with this?

Hint: think about what might
happen when you create an
instance of D

30

© Kenneth M. Anderson, 2012

Multiple Inheritance

• A Second Heuristic

• Whenever there is inheritance in an OO design, ask two questions:

1) Am I a special type of the thing from which I’m inheriting?

2) Is the thing from which I’m inheriting part of me?

• A yes to 1) and no to 2) implies the need for inheritance

• A no to 1) and a yes to 2) implies the need for delegation

• Recall Hippo/List example

• Example

• Is an airplane a special type of fuselage? No

• Is a fuselage part of an airplane? Yes

31

© Kenneth M. Anderson, 2012

Multiple Inheritance

• A third heuristic

• Whenever you have found a multiple inheritance relationship in an object-
oriented design, be sure that no base class is actually a derived class of
another base class

• Otherwise you have what Riel calls accidental multiple inheritance

• Consider the classes “Citrus”, “Food”, and “Orange”; you can have
Orange multiply inherit from both Citrus and Food…but Citrus IS-A Food,
and so the proper hierarchy can be achieved with single inheritance

32

© Kenneth M. Anderson, 2012

Example

33

CitrusFood

Orange

Citrus

Food

Orange

© Kenneth M. Anderson, 2012 34

Multiple Inheritance

• So, is there a valid use of multiple inheritance?

• Yes, sub-typing for combination

• It is used to define a new class that is

• a special type of two other classes

• and where those two base classes are from different domains

• In such cases, the derived class can then legally combine data and
behavior from the two different base classes in a way that makes semantic
sense

© Kenneth M. Anderson, 2012 35

Multiple Inheritance Example

Is a wooden door a special type of door? Yes
Is a door part of a wooden door? No
Is a wooden door a special type of wooden object? Yes
Is a wooden object part of a door? No
Is a wooden object a special type of door? No
Is a door a special type of wooden object? No
All Heuristics Pass!

DoorWoodenObject

WoodenDoor

© Kenneth M. Anderson, 2012

Wrapping Up

• Reviewed examples of Facade and Adapter

• Saw how easy it was to implement them

• Compared the patterns

• A Facade simplifies an interface

• Adapter converts one interface into another

• Provided insight into multiple inheritance and heuristics to determine when it
is safe to use

36

© Kenneth M. Anderson, 2012

Coming Up Next

• Lecture 9: Expanding Horizons

• Read Chapter 8 of the textbook

• Lecture 10: Strategy, Bridge, Abstract Factory

• Read Chapters 9, 10, & 11

37

