
A Combinatoric Interpretation of Dual Variables for Weighted

Matching Problems

Harold N. Gabow ∗

March 2, 2012

Abstract

We consider four weighted matching-type problems: the bipartite graph and general graph
versions of matching and f -factors. The linear program duals for these problems are shown to
be weights of certain subgraphs. Specifically the so-called y duals are the weights of certain
maximum matchings or f -factors; z duals (used for general graphs) are the weights of certain
2-factors or 2f -factors. The y duals are canonical in a well-defined sense; z duals are canonical
for matching and more generally for b-matchings (a special case of f -factors) but for f -factors
their support can vary. As weights of combinatorial objects the duals are integral for given
integral edge weights, and so they give new proofs that the linear programs for these problems
are TDI.

1 Introduction

The weighted versions of combinatorial problems, e.g., weighted bipartite matching, minimum cost
network flow, are usually studied by introducing linear programming duals to ideas developed in the
cardinality version of the problem (e.g., augmenting paths for many problems [7]; blossoms in [5] and
[4] for matching, etc.), This paper takes a closer look at the combinatorics of the weighted problems
without reference to the unweighted cardinality version. We present combinatoric interpretations
of the linear programming duals, that are in some sense canonical. These duals give simple proofs
of classic minimax theorems for cardinality problems.

The results are easily summarized. We study weighted versions of bipartite and general graph
matching, and bipartite and general graph f -factors and b-matchings. We first summarize general
graph matching.

Recall that a graph G is critical for general graph matching if every subgraph G − v, v ∈ V ,
has a perfect matching. Consider such a critical graph.

The dual variable for a vertex, y(v), is the weight of a maximum perfect matching on G− v.

The “z” duals are derived from subgraphs we call 2-unifactors. A 2-unifactor is a perfect
2-matching with precisely one odd cycle. Take the maximum weight 2-unifactor, contract its
cycle, and repeat the process until the graph shrinks to one vertex. Each z dual is difference
in weight between 2 consecutive unifactors. In fact these unifactors also give the value of y
duals, by “splitting” the unifactor into two halves.

∗Department of Computer Science, University of Colorado at Boulder, Boulder, Colorado 80309-0430, USA. e-mail:
hal@cs.colorado.edu

1

These duals are canonical, i.e., essentially unique (unlike the usual duals). This is clear for the
y duals, and we prove it for the z duals if we add the desirable property of laminarity.

The duals are easily translated to optimum duals for maximum weight perfect matching. It is
well-known that other versions of weighted matching (e.g., maximum weight matching) are easily
translated to maximum perfect matching, so we do not consider them.

The duals are weights of combinatorial objects and so have integral value when the weight
function is integral. Thus our duals give alternate proofs that the linear programming formulation
of general graph matching is TDI [13].

The duals give a simple proof of Edmonds’ odd set cover theorem for maximum cardinality
matching [7], which we omit but see below. The duals can be used to simplify the correctness
proof for the matching algorithm of Micali and Vazirani [11], again omitted (y duals give shortest
augmenting path lengths, z duals give their “tenacity”).

Our other problems are treated in a similar fashion with similar results. Rather than repeat
them we just mention the differences or other cogent points. The bipartite problems only have y
duals, and their interpretation is similar to the above. Although no bipartite graph is critical in
the above sense, we use a minor variation. Of course we show the same extension to maximum
weight perfect matching and f -factors. We illustrate proofs of cardinality minimax theorems (as
mentioned above) by sketching how the duals for bipartite f -factors lead to a proof the max-flow
min-cut theorem.

For general graph f -factors the same description of the duals applies,1 using 2f -unifactors. A
2f -unifactor is a 2f -factor, in the graph where each original multiplicity has been doubled, that
has precisely one odd cycle.2 Although this definition is the exact analog of 2-unifactors, values of
f larger than 1 introduce new topological features that make f -factors the most involved part of
our paper. For f -factors the y duals are canonical, but an example shows optimum z duals can
have different support. However for the special case of b-matchings both y and z are canonical.

Our work is most closely related to views of general graph matching that either avoid blossoms,
e.g. [1, 2, 3], or study their structure [14]. For f -factors various derivations of the b-matching
polytope and its relatives, and its integrality properties, are given and referenced in [13, Ch.31–32].

Sections 2–5 discuss bipartite matching, bipartite f -factors, general matching and general f -
factors (along with general b-matchings) respectively. We could use strictly analogous terminology
and notions in all of these sections, but we prefer to take advantage of the special features of each
setting. Most notably, Section 4 does not make explicit use of 2-unifactors, instead we use “ζ
values”. The reader will recognize the obvious correspondence to 2-unifactors when 2f -unifactors
are defined in Section 5. Each section begins by reviewing the linear program duals for the problem
at hand. The last Section 6 gives some promising directions for future work. The Appendix gives
an algorithm for finding a maximum f -factor from the “blossom tree” representation defined in
Section 5.

We close this section with some notation and terminology. The symmetric difference of sets
S and T is denoted S ⊕ T . If e is an element then in set expressions we allow e to represent the
singleton set {e}, e.g., S ⊕ e denotes S ⊕ {e}, S + e denotes S ∪ {e}. If f and g are real-valued
functions on elements and S is a set of such elements, f(S) denotes

∑{f(v) : v ∈ S} and fg(S)
dentoes

∑{f(v)g(v) : v ∈ S}.
We consider undirected graphs and multigraphs. For the latter loops vv are allowed. Also the

notation uv refers to any edge joining u and v; the context will indicate that the choice of uv
remains fixed over the current argument. Two edges joining u and v are distinct objects; thus for

1Definitions of criticality for f -factors that differ from ours are given in [10], also [13, p.559].
2In some contractions the “cycle” can include self-loops on vertices.

2

instance {uv} is the set of all edges joining u and v (not a multiset). Note a loop vv is one edge
and contributes two to the degree of v. For a multigraph, when a set of vertices C is contracted to
a vertex C, C has a loop unless C is independent; also parallel edges are retained.

A walk is a sequence v0, e1, v1, . . . , ek, vk of vertices vi and edges ei, with ei = vi−1vi. We say
v0vk-walk to indicate the two endpoints. The length of the walk is k, and the parity of k makes
the walk even or odd. A trail is an edge-simple walk. For multigraphs a trail can contain parallel
edges since they are distinct. A circuit is a trail that starts and ends at the same vertex. The
vertex-simple analogs are path and cycle, respectively. In a multigraph a loop is considered to be a
simple cycle. If a path P contains vertices i, j then P (i, j) denotes the subpath from i to j.

For any subgraph H (e.g., a path), V (H) (E(H)) denotes its set of vertices (edges). For
convenience we often consider a subgraph to be its vertex set or edge set, when context makes clear
which is meant. For example if P is a path with last edge vt then P − vt + vx is a path ending at
x instead of t.

For a set of vertices S, δ(S)(γ(S)) is the set of edges with exactly one (two) vertices in S. If
the graph for these sets is unclear we include it as an argument, e.g., for a subgraph H, δ(S,H).
For a subgraph H, d(v,H) denotes the degree of vertex v in H.

A matching is a set of edges, no two of which share a vertex. A free vertex is not on any matched
edge. A perfect matching has no free vertices. For any vertex v a v-matching is a perfect matching
on G − v. G is critical (or hypomatchable) if it has a v-matching for every v. An alternating
path (cycle) is a simple path (cycle) whose edges are alternately matched and unmatched; an
augmenting path is an alternating path joining two distinct free vertices. Suppose each edge e
of G has a real-valued weight w(e). A maximum perfect matching M is a perfect matching of
largest possible total weight (by our conventions this weight is w(M)). A maximum v-matching
is defined similarly. If P is an alternating path for a matching M , its weight with respect to M is
w(P,M) = w(P ⊕ M) − w(M) = w(P − M) − w(P ∩ M).

Now let G be a multigraph. Parallel edges and loops are allowed. Let f : V → Z+ be a “degree-
constraint” function. Z+ denotes the set of nonnegative integers. An f -factor is a subgraph H
where each vertex v has d(v,H) = f(v). Other terminology for f -factors follows by analogy with
matching, e.g., when G has edge weights, a maximum f -factor has the greatest weight possible.
Note that parallel edges uv can have distinct weights w(uv).

2 Bipartite matching

This section interprets the dual variables for weighted bipartite matching as weights of matchings.
Later on we do the same for f -factors and general graphs. In all cases the dual problem is first
reviewed and then the interpretation is derived.

Consider a bipartite graph G with vertex sets V0, V1, edge set E and weight function w : E → R.
Recall the linear programming dual of maximum perfect matching [7, 13]: Each vertex v has a real-
valued dual variable y(v). The dual variables dominate if for every edge uv,

y(u) + y(v) ≥ w(uv).

Edge uv is tight if equality holds; a set of tight edges is tight. A set of dual variables is tight if there
is a tight perfect matching. The dual objective is

y(V).

A perfect matching M is maximum iff it is tight with respect to a set of dominating duals. For the
“if” direction we observe that tightness implies w(M) equals the dual objective; dominance implies

3

any perfect matching weighs at most the dual objective. For the opposite direction we now show
such duals exist. Note the above discussion shows that dominating tight duals are optimum, i.e.,
their dual objective equals the weight of a maximum matching.

Without loss of generality assume G has a perfect matching, say M . Let G+ be G with an
additional vertex s ∈ V1 and weight 0 edges su, u ∈ V0. For v ∈ V1, let Mv be a maximum v-
matching on G+. Such a matching exists, for instance if edge uv ∈ M , the v-matching M −uv+su.
For u ∈ V0, let the graph Gu be G+ with another vertex u′ ∈ V0 whose edges are copies of the
edges incident to u with the same weights. Let Mu be a maximum perfect matching on Gu. Such
a matching exists, for instance M + su′.

Theorem 2.1 A bipartite graph with a perfect matching has dominating tight duals

y(v) = (−1)iw(Mv)

where v ∈ Vi.

Proof: Let uv be an edge with u ∈ V0, v ∈ V1. To show dominance, observe that Mv + u′v is
a perfect matching on Gu. Hence it weighs no more than Mu, i.e., w(Mv) + w(uv) ≤ w(Mu), as
desired.

Let M be any maximum perfect matching. To show tightness on M it suffices to show that each
uv ∈ M satisfies w(Mv) ≥ w(Mu)−w(uv), since we have already shown dominance. This follows if
u′v ∈ Mu, since then Mu−u′v is a v-matching on G+ and so weighs no more than Mv. We will find
an Mu containing edge uv; since u and u′ are isomorphic this implies Gu has the desired matching.

For any maximum matching Mu, M ⊕ Mu contains an augmenting (wrt M) su′-path P . Since
u and u′ are isomorphic we can assume that u /∈ P (i.e., if P = s . . . tuv . . . t′u′, with tu, t′u′ ∈ Mu

then modify Mu to contain edges tu′, t′u so the path becomes s . . . tu′). M and Mu both induce a
maximum perfect matching on G− V (P) so we can assume they are identical on G− V (P). Thus
uv ∈ M implies uv ∈ Mu. 2

We call the duals of the theorem canonical because of the following result. Consider any function
y : V ∪ s → R that is dominating and tight on each graph Gv, v ∈ V . This makes sense even for
v ∈ V0 because we can take y(v′) to be y(v). Indeed this choice is forced, since if edges vx and v′x′

are in a maximum matching, vx′ and v′x are also in a maximum matching.

Corollary 2.2 (i) The dual function y of Theorem 2.1 is dominating and tight on every graph
Gv, v ∈ V . So is any translation of y, i.e., for any fixed D,

y′(v) = y(v) − (−1)iD for v ∈ Vi. (1)

(ii) Any function y′ : V ∪ s → R that is dominating and tight on every graph Gv, v ∈ V , is a
translation of y, specifically, D = y′(V + s) in (1).

Proof: (i) Take any graph Gx. An edge uv of Gx with v ∈ V1 − s is dominated by y because even
if x ∈ V0 there is a similar edge in G. For an edge us in Gx, recall M + u′s is a perfect matching
on Gu, so w(Ms) + w(us) ≤ w(Mu), i.e., dominance holds.

Tightness on Gx is proved by the same argument as the theorem. Alternatively y is tight on
Gx if the dual objective is the weight of a maximum matching, w(Mx). We will show this is true,
in fact the dual objective on Gx is given by the expression

w(Ms) − w(Ms) + w(Mx).

4

In proof, the first term w(Ms) is the weight of a maximum matching on G, so the theorem shows
it is the dual objective of y on G. If x ∈ V1 the dual objective on Gx is obtained from the objective
on G by adding the dual of s, −w(Ms), and subtracting the dual of x, −w(Mx). If x ∈ V0 the dual
objective on Gx is obtained from the objective on G by adding the dual of s, −w(Ms), and adding
the dual of x′, w(Mx′) = w(Mx).

The second assertion (1) is clear since translating does not change y(uv) for any edge.
(ii) The hypothesis implies that the weight of a maximum matching on any Gx is given by the

sum of the dual variables. For any vertex x ∈ V1 this means w(Mx) = y′(V + s − x). For x ∈ V0

it means w(Mx) = y′(V + s + x′). It is easy to see these equations are equivalent to the claimed
relations. 2

3 Bipartite f-factors

Consider a bipartite multigraph G = (V,E) with degree constraint function f : V → Z0 and, as
before, vertex sets V0, V1, and weight function w : E → R. We are interested in finding a maximum
(weight) f -factor. For x ∈ R, x+ denotes its positive part, i.e., x+ = max{x, 0}.

We review the linear programming dual problem for maximum f -factors. Each vertex v has a
real-valued dual variable y(v). The dual variables dominate edge e if y(e) ≥ w(e); they underrate
e if y(e) ≤ w(e). The duals are optimal if some f -factor F consists of underrated edges and its
complement consists of dominated edges. The dual objective is fy(V)+(w−y)+(E) (recall (w−y)+

is the positive part of function w − y, so (w − y)(E) is the total excess of the underrated edges).
Observe that the above f -factor F for a set of optimal duals is a maximum weight f -factor. In

proof, G−F contains no strictly underrated edge. Hence F contains every strictly underrated edge
and w(F) equals the dual objective. The dual objective is an obvious upper bound on the weight
of any f -factor. So F has maximum weight.

We now show that such optimal duals y always exist. Note this implies that an arbitrary f -factor
is maximum iff it consists of underrated edges and its complement G − F consists of dominated
edges, both wrt y. Equivalently, its weight is given by the dual objective of optimal duals.

Without loss of generality assume G has an f -factor F . Let G+ be G with an additional vertex
s ∈ V1 and weight 0 edges su, u ∈ V0; set f(s) = 1. For any vertex v define a degree constraint
function fv to be identical to f on all vertices except v, and fv(v) = f(v) + (−1)i. (If v ∈ V1 and
f(v) = 0, v is irrelevant to an f -factor, so assume it is deleted.) Let Fv be a maximum fv-factor
on G+. This subgraph exists: for v ∈ V0 we have F + sv; for v ∈ V1, for any uv ∈ F we have
F − uv + su.

Theorem 3.1 A bipartite multigraph with an f -factor has optimal duals

y(v) = (−1)iw(Fv)

where v ∈ Vi.

Proof: Let F be a maximum f -factor. Take any edge uv of G, with u ∈ V0, v ∈ V1.
First we show F consists of underrated edges, i.e., uv ∈ F implies w(Fv) ≥ w(Fu)−w(uv). The

inequality follows if uv ∈ Fu, since then Fu − uv is an fv-factor and so weighs no more than Fv.
To show uv ∈ Fu observe that F ⊕Fu contains an augmenting (wrt F) su-path P . By definition

uv /∈ P (i.e., P ends in an edge tu ∈ Fu −F , so t 6= v). Since F and Fu are both maximum we can
assume they are identical outside of E(P). So uv ∈ Fu.

5

−1

a

b c

ge f

d

h i

1

−1

1

(a) Graph and nonzero edge weights.

1

−1

1

0

0

−1

0 −1

−1
1

(b) Maximum i-matching and optimum du-
als.

Figure 1: Example critical graph for matching.

It remains to show the complement E−F consists of dominated edges. The argument is similar:
If uv /∈ Fv, then Fv + uv is an fu-factor. Hence w(Fv) + w(uv) ≤ w(Fu) and uv is dominated.
We show uv /∈ F implies uv /∈ Fv by examining F ⊕ Fv as above (i.e., F ⊕ Fv contains an even
alternating sv-path with last edge tv ∈ F − Fv so t 6= u). 2

The analog of Corollary 2.2 holds: First, the f -factor duals are optimal for each function fx.
(To show the duals dominate and underrate for fx follow the tightness proof of Theorem 2.1,
considering Fx ⊕Fu instead of M ⊕Mu.) Second, the f -factor duals are canonical. (The argument
follows Corollary 2.2(ii) using the dual objective for y′, D = fy′(V) + (w − y′)+(E). Any x ∈ Vi

has w(Fx) = D + (−1)iy′(x), giving (1) as before.)
The theorem also gives an alternate proof of the integral max-flow min-cut theorem. We leave

this as an exercise. (The idea is to reduce flow to bipartite f -factor using the equivalence between a
directed path s, a, b, c, d, . . . , w, x, y, z, t and a path s, a′, b, c′, d, . . . , w′, x, y′, z, t′ in a bipartite graph
with 2 copies v, v′ of each network vertex.)

4 Matching on general graphs

This section derives the dual variables for maximum weight perfect matching on general graphs.
Fig.1(a) shows a critical graph that will illustrate our discussion. The edge weights are either 0
or ±1, and edges with nonzero weight are labelled with their weight. Fig.1(b) shows a maximum
weight i-matching, where the matched edges are drawn heavy. Vertices and edge sets are labelled
with a set of optimum duals, which we now explain.

4.1 Review of matching fundamentals

Let G = (V,E) be an arbitrary graph that has a perfect matching, and let w : E → R be a
given weight function on G. We use the graph of Fig.1(a) with i deleted as an example, and
Fig.1(b) illustrates the following definition. Recall the dual variables from Edmonds’ formulation
of weighted perfect matching as a linear program [5]: Two functions y : V → R, z : 2V → R, with z

6

nonnegative except possibly on V , form (a pair of) dual functions. (In [5] z is nonzero only on sets
of odd cardinality, but it is convenient for us to drop this restriction. Also it is easily reinstated,
see below.) Such a pair determines a dual edge function ŷz : E → R which for an edge e is defined
as

ŷz(e) = y(e) + z{B : e ⊆ B}.
(Recall that by convention if e = vw then y(e) = y(v) + y(w). Similarly the last term denotes∑{z(B) : e ⊆ B}.) The duals dominate if for every edge e,

ŷz(e) ≥ w(e).

The dual objective is

(y, z)V = y(V) +
∑

{⌊|B|/2⌋ z(B) : B ⊆ V }.

The dual objective upperbounds the weight of any perfect matching M :

w(M) =
∑

{w(e) : e ∈ M}

≤
∑

{ŷz(e) : e ∈ M} =
∑

{y(v) : v ∈ V } +
∑

{z(B) : e ∈ M, e ⊆ B} (2)

≤ y(V) +
∑

{⌊|V (B)|/2⌋ z(B) : B ⊆ V } = (y, z)V

where the last inequality follows since a matching on b vertices has cardinality ≤ ⌊b/2⌋.
Edge e is tight if the dominance condition holds with equality; a set of tight edges is tight. A

matching respects a set of vertices B if it contains ⌊|V (B)|/2⌋ edges of γ(B). A perfect matching
is maximum iff it is tight and respects all sets with positive z for a pair of dominating duals. The
“if” direction follows from (2). The “only if” direction follows from the existence of such duals.
We call such duals y, z optimum. Edmonds’ blossom algorithm constructively proves the existence
of optimum duals [5]. We will give an alternate proof. Note the above discussion shows the weight
of a maximum matching equals the objective of optimum duals.

Fig.1(b) shows optimum duals. The optimum duals are not unique, e.g., simpler optimum duals
are given by y(h) = 1 and all other y, z equal to 0. We will see that the duals of Fig.1(b) come
from ”canonical” duals.

Before proceeding note that if y, z is a pair of optimum duals, we can modify z to be nonzero
only on odd sets: Let |V (B)| be even with z(B) > 0 unless B = V . Choose an arbitrary vertex
v ∈ V (B), increase y(v) and z(B − v) by z(B) and change z(B) to 0. This transformation does
not change ŷz(e) for e ⊆ V (B). It increases ŷz(e) for edges going from v to V − B, but none of
these is matched in M (by tightness of the second inequality of (2)). The dual objective remains
unchanged, since |B| even implies ⌊|B|/2⌋ = ⌊(|B| − 1)/2⌋ + 1. So it is easy to see that doing this
for every such even sets B gives optimum duals with z positive only on odd sets.

A blossom is a subgraph B of G defined recursively as follows. For the base case, any vertex
is a blossom (it has no edges). For the general case, the vertices V (B) are partitioned into an odd
number of sets V (Bi), 1 ≤ i ≤ k, k ≥ 3 odd, where each Bi is a blossom, called a subblossom of
B. The edges E(B) are the edges E(Bi) plus k more edges that form a cycle on the Bi, i.e., an
edge joins V (Bi) to V (Bi+1), where k + 1 is interpreted as 1. Fig.2 gives an example, where the
maximal blossom B1 has 3 subblossoms and B2 has 5 subblossoms. Note that a blossom is not an
induced subgraph.

A blossom B can be represented by an ordered tree called a blossom tree (see Fig.2). Its root is
a node labelled B. If B contains subblossoms Bi, 1 ≤ i ≤ k, then the subtrees of the root are the
blossom trees for B1, . . . , Bk in that order. In addition each node Bi is labelled by the edge bici of

7

B3

−2

0

−1

−1 −1

−2

−1 −2

−2

a

d

g i

gi ihcg

c b

f h e

hecd df fh eb

ac cb ba

B1: 2

B2: 1

B3: 1

B1

B2

Figure 2: Optimum matching structure for critical graph: Duals y, z and blossom tree.

B that has bi ∈ V (Bi), ci ∈ V (Bi+1). A blossom forest is a collection of blossom trees such that
any vertex is a leaf in at most one tree.

A maximum cardinality matching on a blossom has precisely one free vertex. Such a matching
respects blossom tree B if it respects each blossom (i.e., node) of B. In this case each blossom (i.e.,
node) of B has a base vertex: The base vertex of blossom B is the unique vertex in B not matched
to a vertex in B. (Sometimes when context makes it clear, “base” refers to the subblossom Bi

containing the base vertex.)
Edmonds’ algorithm maintains a structured matching. This is a matching M plus blossom forest

F plus dual functions y, z that collectively satisfy these conditions:

(i) M respects F .
(ii) z is nonzero only on nonleaf blossoms of F .
(iii) The duals dominate every edge and are tight on every edge that is matched or in a blossom

subgraph.

Clearly these conditions imply a structured matching that is perfect is a maximum perfect matching.
Let G be a critical graph. We now define an optimum matching structure for G. Its purpose is

to provide a succinct representation of a maximum matching Mv for each v ∈ V ; our construction
will produce this structure. The optimum matching structure consists of a blossom tree B plus
dual functions y, z, such that every vertex is a leaf of B and properties (ii) and (iii) above are
satisfied (see Fig.2). There is no matching in this definition, so property (i) is omitted and (iii)
only requires the blossom edges to be tight. It is easy to see that Edmonds’ algorithm computes
an optimum matching structure when it is executed on a critical graph.

Given an optimum matching structure, for any vertex v a maximum v-matching Mv can be
found as follows. We use a recursive procedure blossom match(B,β), where B is a node of the
blossom tree B and β is the base vertex of B in Mv (e.g., in the initial call B is the root of B and
β is v). Let the subblossoms of B be B1, . . . , Bk, joined by the k edges bjcj as above. Choose i so
β ∈ V (Bi). The edges that are matched are bjcj , j = i + 1, i + 3, . . . , i + k − 2, where as above
we assume addition wraps around. Add these to Mv. Now the base βr of each subblossom Br is

8

2

2

2 2

01 2

1

1 1

3

1

2

4 4

4

3

3

3

3

2
2

Figure 3: w(Mv) and ζ values; ζ∗ = 4.

determined. (It is β for r = i and the matched vertex of Br for r 6= i.) So for each Br that is not
a vertex we execute the recursive call blossom match(Br, βr).

To show blossom match constructs a maximum weight matching, convert the given duals y, z
on G to duals on G− v by discarding the value y(v) and setting z(B − v) = z(B) for each B. (Note
this can create even sets with positive z values.) It is easy to see that the constructed matching
Mv weighs (y, z)V − y(v). (Note that (y, z)V does not change when we redefine z, since |B| odd
implies ⌊|B|/2⌋ = ⌊(|B|− 1)/2⌋.) Thus Mv is a maximum v-matching, and we have optimum duals
on G − v.

Using an appropriate data structure for B the algorithm finds Mv in O(n) time (e.g., use parent
pointers on B, observing that a vertex u of G is the base vertex of blossoms that form a path in B
from u to some ancestor).

4.2 Deriving the duals

We show how to construct an optimum matching structure for a critical graph G, and then we
extend the result to perfect matching. The construction, when specialized to the case of unit
weight edges, is similar to Lovász’s proof that a critical graph has an ear decomposition into odd
length ears [8].

In a critical graph, for any vertex v let Mv be a maximum v-matching. For any edge uv define

ζ(uv) = w(Mu) + w(Mv) + w(uv).

See Fig.3, where each vertex v is labelled by w(Mv) and each edge uv is labelled by ζ(uv). Let ζ∗

be the maximum value of ζ.

Lemma 4.1 Any edge e of a critical graph is in an odd cycle C of edges f satisfying ζ(f) ≥ ζ(e).
If ζ(e) = ζ∗ then any vertex v ∈ V has a maximum v-matching that respects C.

Proof: Consider any edge e = uv. Mu ⊕Mv contains an alternating (wrt Mu or Mv) even uv-path
P . Thus C = P + uv is an odd cycle. Mu and Mv both induce a maximum perfect matching on
G − V (C). Without loss of generality they induce the same perfect matching, say R.

9

a,b,c,d,e,f,h
ge f

d

h i

1

−1

1

a,b,c

−1

g

i

11

−1

Figure 4: Constructing the blossom tree: Graphs G with nonzero edge weights.

Consider any vertex t ∈ C. Define a t-matching Nt to be R ∪ Ct, where Ct is the (unique)
t-matching of C. For any edge rs of C, each edge of C − rs is in precisely one of the matchings
Cr, Cs. Thus

ζ(rs) ≥ w(Nr) + w(Ns) + w(rs) = w(C) + 2w(R) = w(Mu) + w(Mv) + w(uv) = ζ(uv),

giving the first assertion.
Now assume ζ(uv) = ζ∗. The above inequality implies ζ(rs) = ζ∗ and each Nr is a maximum

r-matching for r ∈ C. This gives the second assertion of the lemma for vertices r of C.
To complete the proof assume r /∈ C. Choose any vertex t ∈ C. Mr⊕Nt contains an alternating

even rt-path. Let P be the subpath from r to the first vertex of C, say x. The last edge of P is
in Mr, since Nt ∩ δ(C) = ∅. Since Nx and Nt are identical outside of C, Mr ⊕ Nx contains P as a
connected component. Thus without loss of generality Mr is identical to Nt on G − V (P). Thus
Mr respects C. 2

Given an odd cycle C as in Lemma 4.1, define graph G to be G with C contracted to a single
vertex C (see Fig.4). In this section we assume a contraction operation can create parallel edges
but not self-loops. So there can be parallel copies of edges from a vertex not in C to C. Thus an
edge e of G with at most one end in C corresponds to a unique edge in G; for convenience we use
e to also refer to the latter edge. Note that the lemma implies G is critical (a perfect C-matching
is induced by each Nr, r ∈ C).

For v ∈ C let Cv be a v-matching on C. For edge uv in G define a weight w(uv) by

w(uv) = w(uv) u, v /∈ C,
= w(uv) + w(Cv) v ∈ C.

The new weight function preserves weights in the following sense:

(i) For any vertex v ∈ V − C, a maximum v-matching weighs the same in G and G.
(ii) For any v ∈ C, a maximum C-matching (in G) weighs w(Mv) − w(Cv).
(iii) Any edge e of G has ζ(e) the same in G and G.

To prove (i) use the fact that Lemma 4.1 shows the maximum v-matching in G contains exactly
one edge of δ(C). To prove (ii) use the fact that Lemma 4.1 shows a maximum v-matching (in G)
contains Cv and so contains a maximum matching on G − V (C). (iii) follows from (i) and (ii).

10

Define a blossom tree B for G by repeating the following step until the graph consists of one
vertex: Create a blossom C from an odd cycle given by Lemma 4.1; then change the graph to G.

The construction can be iterated since as noted G is critical. The blossoms so defined give a
blossom tree B that contains every vertex as a leaf. Property (iii) shows ζ∗ never increases as the
construction progresses.

Now we define dual variables on G using this notation: For a blossom B let p(B) be the parent
of B in B, and let ζ(B) be the value ζ∗ when B is created. (For instance ζ(V) is the last value of
ζ∗, which causes the graph to be contracted into a single vertex.) Then define duals

y(v) = −w(Mv) v ∈ V,

z(B) =






ζ(V) B = V,
ζ(B) − ζ(p(B)) B a blossom 6= G,
0 otherwise.

(We get Fig.2.) z is nonnegative function except perhaps on V (since as noted, ζ∗ never increases).
Clearly any blossom B has ζ(B) = z{C : V (B) ⊆ V (C)}.

Theorem 4.2 For a critical graph G, duals y, z and blossom tree B form an optimum matching
structure.

Proof: Let e be an edge of G. The definition of y implies that w(e) = y(e) + ζ(e). Let B be the
first blossom created with e ⊆ V (B). Hence ζ(e) ≤ ζ(B). This implies dominance, since

w(e) ≤ y(e) + ζ(B) = y(e) + z{C : e ⊆ C}.

If e is an edge of a blossom subgraph the above holds with equality so e is tight. 2

Now consider a graph G with a perfect matching M . Let G+ be G with an additional vertex s
and weight 0 edges sv, v ∈ V . G+ is critical: For vertex v with edge vv′ ∈ M, M − vv′ + v′s is
a v-matching. So Theorem 4.2 gives an optimum structured matching on G+. Ms is a maximum
perfect matching on G. So we have optimum duals for an s-matching on G+.

These duals are essentially optimum duals for a maximum perfect matching on G. It is easy to
modify these duals to get the standard optimum duals (as in [5]): For every B containing s, replace
B by B − s; then use the transformation of Section 4.1 to eliminate this even set from the support
of z.

We next argue that our duals are canonical. Define optimum duals for a critical graph G to be
a pair of functions y, z that is dominating, tight on every maximum matching Mv, each such Mv

respects every set with positive z, and z is nonzero only on odd sets. This implies every maximum
Mv has weight equal to the dual objective (y, z)V − y(v). (Note that (y, z)V has the same value
on G and G − v, since odd sets B containing v have ⌊|B|/2⌋ = ⌊(|B| − 1)/2⌋.)

It is convenient to switch notation and denote our duals as y∗, z∗. We are interested in how
y∗, z∗ relate to arbitrary optimal duals y, z on the critical graph G. Obviously our duals give
other optimum duals by translation– for any value D, decrease each y∗(v), v ∈ V , by D and
increase z∗(G) by 2D. Conversely any optimum y is a translation of y∗. In proof for any v ∈ V ,
(y, z)(V − v) = w(Mv), so y(v) = (y, z)V − w(Mv) = (y, z)V + y∗(v).

In light of this relation, for the rest of the discussion translate y, z so z(G) = z∗(G). The
functions z and z∗ obey an obvious relation: For any edge e define

z̄(e) = z{X : e ⊆ X}

11

e

1
3

2

2

1

1

2

a

b

c

d

(a) Graph, nonzero edge weights
and matching weights.

B1:4

B2:1

(b) Blossoms and z values.

45

(c) z with nonlaminar support.

Figure 5: z needn’t have laminar support.

and define z̄∗(e) analogously for the function z∗.3 Let EM be the set of edges in some maximum
matching Mv , EM =

⋃
v Mv. Tightness means

e ∈ EM =⇒ z̄∗(e) = z̄(e).

However z and z∗ needn’t have the same support: Fig.5 gives an optimum z with nonlaminar
support.

Requiring laminarity makes our duals canonical, as the next result shows. We continue to
assume that y, z is a pair forming optimum duals for the critical graph G and we have normalized
to make z(G) = z∗(G).

Theorem 4.3 If the support of z is laminar then z = z∗.

Proof: Let Z (Z∗) denote the support of z (z∗), respectively. Clearly it suffices to show these
supports are the same. Consider an arbitrary set Z ∈ Z.

Claim 1 If Z contains edge e and is crossed by edge f then z̄(e) > z̄(f).

Take X ∈ Z with f ⊆ X. The latter implies X ∩ Z 6= ∅ and X 6⊆ Z. Thus Z ⊂ X. So the sets
of Z contributing to z̄(f) are a proper subset of those contributing to z̄(e), z̄(e) > z̄(f). ♦

Claim 2 Z is connected by the edges EM .

Suppose Z is the union of disjoint sets Z0, Z1 with no edge of EM joining them. Take v ∈ Z
and consider matching Mv. If v ∈ Z0 then |Z1| is even, since Mv respects Z. Similarly |Z0| is even.
This makes |Z| even, but Z is an odd set. ♦

Observe that EM is identical to the set E(R) for R the root of B (recall the blossom match
procedure).

Claim 3 Consider any B ∈ Z∗ and any edge e ∈ EM that is contained in B but no smaller blossom
of Z∗. Any set Z ∈ Z that contains e actually contains B, V (E(B)) ⊆ Z.

Recall that E(B) makes B a connected subgraph (for any blossom). So arguing by contra-
diction, let f ∈ E(B) cross Z. Claim 1 shows z̄(e) > z̄(f). But every edge g ∈ E(B) has

3z̄∗(e) is essentially ζ(e) but we don’t use this.

12

3
−1

1
1

−1

a
b

d
2

e
1

c 1

f 1

3

(a) Graph with degree constraints and nonzero edge
weights.

1

−2

−1

−2

−2

−1

−2

22

(b) Maximum fb-factor and optimum duals.

Figure 6: Example critical graph for f -factors.

z̄(g) = z̄∗(g) ≥ z̄∗(e) = z̄(e), contradiction. ♦

Claim 4 Z∗ ⊆ Z.

Take any B ∈ Z∗. Take an edge e ∈ EM as in Claim 3 for B. Let Z ∈ Z be the minimal set
of Z that contains e. We will show Z = B. Claim 3 shows B ⊆ Z. So assume the containment is
proper, say v ∈ Z − B.

Mv respects Z, so no edge of Mv crosses Z. Mv contains an edge f ∈ δ(B), since B is an odd
set. Thus f ⊆ Z. This implies z̄(f) ≥ z̄(e). This is equivalent to z̄∗(f) ≥ z̄∗(e) since both edges
are in EM .

But f ∈ δ(B) and z∗(B) > 0 gives z̄∗(f) < z̄∗(e), contradiction. ♦

Claim 4 shows we can complete the proof by showing Z ⊆ Z∗. So take any Z ∈ Z. Let B be
the minimal blossom in Z∗ that contains Z. It suffices to show Z = B. In fact we need only show
B ⊆ Z.

The minimality of B shows Z contains two vertices not both in the same set B′ for any B′ ∈ Z∗

and B′ ⊂ B. Claim 2 shows Z is connected in EM . Thus Z contains an edge e ∈ EM that is
contained in B but no smaller B′ ∈ Z∗. Claim 3 shows B ⊆ Z. 2

5 f-factors on multigraphs

This section derives the dual variables for the maximum weight f -factor problem on arbitrary
multigraphs. As before, Fig. 6(a) shows a graph that will illustrate our discussion. Edge weights
are in {0,±1}, edges with nonzero weight are labelled with their weight, and vertices are labelled
with their degree constraint f(v). Fig. 6(b) shows a maximum weight fb-factor, where fb has
fb(b) = 2 and is otherwise identical to f (see below); the edges in the fb-factor are drawn heavy.
Vertices and edge sets are labelled with a set of optimum duals, which we now explain.

13

5.1 Review of fundamentals

We review the linear programming dual problem for maximum weight f -factors [13, Ch.32].
Let I ⊆ 2V ×2E be the family of all pairs (C, I) where C 6= ∅ and I is a (possibly empty) subset

of δ(C). For B ∈ I we write C(B) and I(B). (Sometimes when context allows we write I(C) for
the second component of a pair with first component C.) A pair (C, I) ∈ I covers every edge of
γ(C) ∪ I. The main property of a pair (C, I) ∈ I is

Any f -factor F contains ≤ ⌊f(C)+|I|
2 ⌋ edges covered by (C, I).

This follows since a covered edge of F contributes 2 to the quantity f(C) + |F ∩ I|. So F contains

≤ f(C) + |I| covered edges. An f -factor F respects (C, I) if it contains exactly ⌊f(C)+|I|
2 ⌋ covered

edges. An f -odd pair is an ordered pair (C, I) ∈ I with f(C) + |I| odd. We write odd pair when f
is understood. Similarly for f -even pair.

Fig. 6(b) uses the three pairs ({a}, {ab1, ab0}), (V − a, {ab1}) and (V, ∅), where the two parallel
edges ab are differentiated by using their weight as a subscript. ab0 is drawn solid on the a side
and dashed on the b side to show that it belongs to I(a) but not I(V − a). The fb-factor respects
all these pairs, since ⌊5/2⌋ = 2 and ⌊8/2⌋ = 4.

Two functions y : V → R, z : I → R form (a pair of) dual functions if z(C, I) ≥ 0 whenever
C ⊂ V . Such a pair determines a dual edge function ŷz : E → R, defined by

ŷz(e) = y(e) + z{(C, I) : (C, I) ∈ I covers e}.

The duals dominate edge e if ŷz(e) ≥ w(e); they underrate e if ŷz(e) ≤ w(e). (In Fig. 6(b) edge
bf−1 is strictly dominated, bd is strictly underrated, and all other edges are tight.) As in Section
3, (w − ŷz)+(E) is the total excess. Any f -factor F satisfies

w(F) ≤
∑

{ŷz(e) : e ∈ F} + (w − ŷz)+(E)

= fy(V) +
∑

{z(C, I) : e ∈ F, e covered by (C, I)} + (w − ŷz)+(E) (3)

≤ fy(V) +
∑

{⌊f(C) + |I|
2

⌋z(C, I) : (C, I) ∈ I}+ (w − ŷz)+(E)

= (y, z)V

where the equality in the last line defines the dual objective (y, z)V . F is maximum iff its weight
equals the value of the dual objective for some pair y, z, i.e., F consists of underrated edges, its
complement consists of dominated edges, and it respects all pairs with positive z. ((In Fig. 6(b) the
fb-factor weighs 2 and the dual objective is −2(3+2+2+1)−1(1+1)+2⌊10/2⌋+2⌊5/2⌋+1⌊8/2⌋+2 =
−16 − 2 + 10 + 4 + 4 + 2 = 2.) The “if” direction follows from (3). The “only if” direction follows
from the existence of such duals [13, Ch.32]. We call such duals y, z optimal, so the weight of
a maximum f -factor equals the objective of optimal duals. We give a combinatorial proof that
optimal duals always exist.

For each vertex v ∈ V define fv, the lower perturbation of f at v. by decreasing f(v) by one.
Similarly define f v, the upper perturbation of f at v. by increasing f(v) by one. Each fv, f v, v ∈ V
is a perturbation of f . The notation flv stands for a fixed perturbation that is either fv or f v. A
graph is f -critical if it has an f ′-factor for every perturbation f ′ of f .

The graph of Fig. 6(a) is critical. This can be seen by examining Fig. 7, which gives a maximum
weight factor Flv for every perturbation flv. The perturbations which have a weight 2 factor are

14

1

a

F
c

Fd

Fe

F
f

a
Fb

F,
2 1

1

1

1

F

(a) Maximum factors of weight 2 with residual degree
constraints.

1

b

Fc

F
d

F
e

Ff

2 1

1

0

0

F

(b) Maximum factors of weight 1 with residual degree
constraints.

Figure 7: Maximum perturbed f -factors.

(a)

a
3

3

b c

3

a
2

3

b c

3

a
3

2

b c

3
(c)(b)

Figure 8: Noncritical graph: (a) Graph and degree constraints. (b) fa-perturbation. (c) fb-
perturbation. No fa-perturbation exists.

indicated in Fig. 7(a) – vertex labels specify the factors with weight 2, each such factor contains the
heavy edges plus additional edges selected according to the residual degree constraints shown (e.g.,
the additional edges in Fb are shown in Fig. 6(b)). The remaining perturbations have a maximum
factor of weight 1 and are indicated in Fig. 7(b).

The definition of criticality is consistent with matching criticality. Indeed for an arbitrary degree
constraint f , if an fu-factor exists and omits some edge uv incident to u, adding it gives an f v-factor.
In a matching-critical graph both conditions always hold, i.e., when all lower perturbations exist so
do all upper perturbations. Fig.8 shows this is not true for arbitrary f . (We have chosen a bridgeless
noncritical graph since Lemma 5.10 below shows bridgeless graphs have special properties.)

For an f -critical graph the dual pair y, z is optimal if z is nonzero only on f -odd pairs and every
maximum perturbation of f satisfies the above optimality condition, i.e., a maximum fv-factor
weighs

(y, z)V − y(v)

= fy(V) − y(v) +
∑{⌊f(C)+|I|

2 ⌋z(C, I) : (C, I) ∈ I} + (w − ŷz)+(E)
(4)

and a maximum f v-factor weighs

(y, z)V + y(v) +
∑

{z(C, I) : (C, I) ∈ I, v ∈ C}. (4′)

(We use f -oddness.) We will show how to construct optimal duals for an f -critical graph G (and
then extend that to f -factors, as in matching). In fact we will construct an “optimum f -factor
structure” analogous with matching, but that concept won’t be needed for our development.

15

The next lemma characterizes when an f -factor respects a pair.

Lemma 5.1 An f -factor F respects B = (C, I) ∈ I if and only if

F ∩ δ(C) =

{
I B is f -even
I ⊕ e B is f -odd, e is some edge in δ(C).

Proof: Let δ be 0 (1) if B is f -even (f -odd). F respects B iff ⌊f(C)+|I|
2 ⌋ = d(F, γ(C))/2 + d(F, I),

i.e.,
f(C) + |I| − δ = d(F, γ(C)) + 2d(F, I) = f(C) + d(F, I) − d(F, δ(C) − I).

Clearly d(F, I) ≤ |I|. So comparing the left-hand side with the right shows when δ = 0 the condition
is equivalent to d(F, I) = |I|, d(F, δ(C) − I) = 0. Similarly when δ = 1 the condition is equiva-
lent to d(F, I) = |I|−1, d(F, δ(C)−I) = 0 or d(F, I) = |I|, d(F, δ(C)−I) = 1. The lemma follows. 2

The proof does not refer to values of f outside of C. So in our context, the lemma shows that
an flv-factor F respects an f -odd pair B = (C, I) iff F ∩ δ(C) is I when v ∈ C, or I ⊕ e for some
e ∈ δ(C) when v /∈ C.

Note the graph of Fig.8 does not have the analog of optimum f -critical duals, i.e., every lower
perturbation exists but no dual pair y, z is optimum for every lower perturbation. In proof, assign
weight 1 to each loop and 0 to each nonloop. (4) shows that wlog we can assume y(a) = −2,
y(b) = y(c) = −1, The perturbations of Fig.8(b)–(c) show every edge e is in some maximum
perturbation and not in another. Thus e is tight. So each loop (nonloop) is covered by sets of total
z-value 2 (3). Thus some pair (C, I) with positive z covers ab but not bb. Clearly C = {a}. Hence
every maximum fa-perturbation F has F ∩ δ(a) equal to I or I ⊕ e, i.e., two such perturbations
differ on ≤ 2 edges of δ(a). Fig.8(a) shows there are two such perturbations differing on all 4 edges
of δ(a).

5.2 Unifactors

This section presents the properties of “unifactors”, the subgraphs that we use to find blossoms.
As in matching, blossoms are built up from odd cycles. The “odd cycle” part is captured in the

following definition.

Definition 5.2 An elementary blossom B is a 4-tuple (V B,C(B), CH(B), I(B)), where V B ⊆ V ,
C(B) is an odd circuit on V B, CH(B) ⊆ γ(V B), I(B) ⊆ δ(V B), and every v ∈ V B has

f(v) = d(v,C(B))/2 + d(v,CH(B) ∪ I(B)). (5)

We call C(B), CH(B), and I(B) the circuit, chords, and incident edges of B, respectively. Note
that we allow V B to be a singleton {v}, in which case C(B) is an odd number of loops vv, CH(B)
contains other loops vv, and I(B) contains edges incident to B.

In general (V B, I(B)) forms an odd pair, since summing the equations (5) gives

f(V B) + |I(B)| = |C(B)| + 2|CH(B)| + 2|I(B)| ≡ 1 (mod 2).

From now on all congruences will be modulo 2 and we will omit the modulus. Also for convenience
we sometimes use the term “blossom” or “elementary blossom” to reference the blossom’s circuit
or its odd pair.

16

α
α

a α

a
b

d
4

e
2

c

f 2

6 6
a

a

a

2

a

Figure 9: Multiplicity 2 edges of unifactors for circuits on a and α = V − a. Vertex labels give 2f .

For simplicity perturb the edge weights slightly so that no two sets of edges have the same
weight. That is, number the edges from 1 to m and increase the weight of the ith edge by ǫi for
some ǫ ≥ 0. For small enough ǫ > 0, no two sets of edges have the same weight. Thus any such
perturbation has a unique maximum factor which is also maximum for the original weights. Let
Fv and F v denote the maximum weight fv and f v -factors respectively.

We use this terminology for a multiset S. 2S denotes S with every multipicity doubled. Similarly
for a multigraph G = (V,E), 2G denotes the multigraph (V, 2E). If every multiplicity of S is even
then S/2 denotes S with every multiplicity halved.

A 2f -unifactor is a 2f -factor of 2G whose edges of odd multiplicity form an odd circuit. Equiv-
alently it consists of edges of multiplicity two plus an odd circuit of multiplicity one. (Parallel
edges of multiplicity two allow us get multiplicities > 3.) In the case of matching (i.e., f ≡ 1) a
2f -unifactor is a 2-matching with one cycle [10]. Note also that a 2f -unifactor can be viewed as
“almost bipartite”. We often abbreviate “2f -unifactor” to “unifactor” without causing confusion.

In Fig.9 and later figures it is convenient to define the edge set

α = V − a.

The figure shows the multiplicity two edges in the unifactors whose circuits span a and α respec-
tively. These two unifactors weigh 4 and 3 respectively and are the two largest unifactors.

We shall use the maximum weight unifactor to find the first blossom (and similar unifactors
thereafter). Let U be an arbitrary 2f -unifactor with circuit C. Define the elementary blossom of U
as the 4-tuple B = (V (C), C,CH(B), I(B)) where CH(B) = (U∩γ(C))/2 and I(B) = (U∩δ(C))/2.
(As an example, the unifactor for a in Fig.9 corresponds to the elementary blossom for the odd
pair ({a}, {ab1, ab0}) in Fig. 6(b).)

Lemma 5.3 B is an elementary blossom. If U is the maximum weight unifactor then C is a cycle.

Proof: For the first assertion we must check f(v), v ∈ C. The definition of unifactor shows
2f(v) = d(v,C∪CH(B)∪I(B)) (since in a multigraph the degree function d counts edges according
to their multiplicity). Dividing by 2 gives (5).

We prove the second assertion by contradiction. Suppose a vertex v has degree > 2 in C. We
can write C as the disjoint union of circuits C1 and C2 that are joined at v. Let C1 be odd and

17

C2 be even. C2 is the disjoint union of edge sets D1 and D2 formed by taking alternate edges of
C2. Wlog w(D1) > w(D2). It is easy to see that U + D1 −D2 is a 2f -unifactor with circuit C1 and
weight greater than w(U). But U has maximum weight, contradiction. 2

It is easy to see that for a given vertex v, and the maximum unifactor containing v in its circuit
C, C need not be a cycle. However the above argument shows that C contains exactly 2 edges (or
1 loop) incident to v.

In the following discussion recall that G is a multigraph that may contain loops. The next
lemma and its corollary identify the maximum weight unifactor satisfying certain conditions – the
existence of such unifactors may not be immediately obvious but existence is proved as well.

Lemma 5.4 For any vertex v, the maximum weight 2f -unifactor containing v in its circuit is
Fv + F v.

Proof: Clearly Fv + F v is a 2f -factor. Write Fv + F v = 2(Fv ∩ F v) + (Fv ⊕ F v), where the edges
in the first set have multiplicity two and those of the second set have multiplicity one. The second
set Fv ⊕ F v is an odd circuit containing v. Thus Fv + F v is a 2f -unifactor.

Let U be a 2f -unifactor whose circuit C contains v. Halve the multiplicity of each even-
multiplicity edge of U , and choose alternate edges of C, starting and ending with two edges at v.
We get an f v-factor Uv. Similarly we get an fv-factor Uv by omitting the first and last edges at v.
Thus

w(U) = w(Uv) + w(Uv) ≤ w(Fv) + w(F v) ≤ w(U). (6)

We conclude that equality holds throughout, proving the lemma. 2

It is worth reviewing the proof for the case vv ⊂ C. There are two choices for Uv, depending on
the direction that C is traversed. Similarly for Uv. This seems to contradict the uniqueness of Fv

and F v. But this can never occur: If the two traversals yield the partition of C − vv into sets C1

and C2, where wlog w(C1) > w(C2), then U + C1 − C2 is a 2f -unifactor containing v in its circuit
and weighing more than U , impossible.

Next we give a version of the lemma that is oriented towards edges rather than vertices v. For
ordinary matching, every edge satisfies part (i). Let uv be an arbitrary edge. For a multigraph
this means a fixed copy of uv. We allow uv to be a loop, although this makes part (ii) below
vacuous. Fig.10 illustrates the corollary. For instance the maximum unifactor containing edge
bd in its circuit consists of the length 3 circuit bdcb plus multiplicity two edges de, bf0, ab1, aa
(Fig.7(b)). As indicated in Fig.10 it weighs 1.

Corollary 5.5 (i) If uv /∈ Fu ∪ Fv the maximum weight 2f -unifactor containing uv in its circuit
is Fu + Fv + uv.

(ii) If uv ∈ Fv −Fu the maximum weight 2f -unifactor whose circuit contains v and is incident
to uv is Fu + Fv + uv. Furthermore Fu = F v − uv.

(iii) If uv ∈ Fu∩Fv the maximum weight 2f -unifactor containing uv in its circuit is F u+F v−uv.

Proof: (i) Suppose uv /∈ Fu ∪ Fv. Fu + Fv + uv is clearly a subgraph of 2G. If uv is not a loop
then

d(u, Fu + Fv + uv) = (f(u) − 1) + f(u) + 1 = 2f(u)

and similarly for v. A similar equation holds if uv is a loop. We conclude Fu+Fv +uv is a 2f -factor.
Fu ⊕ Fv + uv is an odd circuit of edges of multiplicity one, containing uv. So Fu + Fv + uv is a
2f -unifactor containing uv in its circuit. The analog of the second inequality of (6) holds.

18

f

i:4=2+2+0
iii:2=2+1−1

ii:4=2+2+0

i:3=2+1+0

i:3=2+1+0

i:3=2+1+0

i:3=2+1+0

i:3=2+2−1
iii:1=1+1−1

i:2=2+1−1

a
b

c

d

e

Figure 10: Weight of unifactors from Corollary 5.5: Part number (i) – (iii) and arithmetic expres-
sion for the weight.

For the converse let U be the unifactor of (i). The multiplicity one edges of U − uv form an
even trail from u to v. Construct Uu and Uv from U − uv by taking alternate edges of the trail,
with the first edge in Uv and the last edge in Uu. The analog of the first inequality of (6) holds.
Part (i) follows.

(ii) Suppose uv ∈ Fv −Fu. Fu +Fv +uv is a subgraph of 2G. As in (i) it is a 2f -factor. Fu⊕Fv

is an even trail from u to v. It starts with the chosen copy of edge uv in Fv − Fu, and proceeds
along a circuit C at v. So the edges of multiplicity one in Fu + Fv + uv are those of C. In other
words Fu + Fv + uv is a 2f -unifactor whose circuit contains v and is incident to uv. The analog of
the second inequality of (6) holds.

Conversely take U as the unifactor of (ii). We show U − uv is the disjoint union of Uu and Uv,
respectively fu and fv -factors, with uv ∈ Uv −Uu. This will give the analog of the first inequality
of (6), proving part the first claim of (ii).

The multiplicity one edges of U − uv form an even trail starting with uv and followed by a
circuit containing v. Construct Uu and Uv by taking alternate edges of the trail, with the first edge
uv in Uv and the last edge in Uu. Also split a copy of each even multiplicity edge of U − uv into
each of Uu, Uv . It is easy to see u and v have degree f(u) and f(v) − 1 in Uv, and f(u) − 1 and
f(v) in Uu, as desired.

We turn to the second claim of (ii). The hypothesis uv ∈ Fv − Fu shows that adding uv to Fu

gives an f v-perturbation. Hence w(Fu) + w(uv) ≤ w(F v). We have Fv ∩ δ(v) ⊆ F v (see Lemma
5.4). So uv ∈ F v, F v −uv is an fu-perturbation and so w(F v)−w(uv) ≤ w(Fu). Together the two
inequalities imply equality. The perturbed edge weights imply F v − uv = Fu.

(iii) Suppose uv ∈ Fu ∩ Fv. This implies uv ∈ F u ∩ F v. We will show that for any edge uv
belonging to F u∩F v, the maximum weight 2f -unifactor containing uv in its circuit is F u +F v−uv.
This implies part (iii).

Suppose uv ∈ F u ∩ F v. Clearly F u + F v − uv is a 2f -factor. F u ⊕ F v is an even trail from u
to v. So the edges of multiplicity one in F u + F v − uv form a circuit containing uv. The analog of
the second inequality of (6) holds.

Conversely take U the unifactor of (iii). We will partition the edges of U + uv into subgraphs
Uu and Uv, where Uu and Uv are fu and f v -factors respectively, both containing uv. This will
give the analog of the first inequality of (6), proving part (iii).

19

The multiplicity one edges of U − uv form an even trail from u to v. As in part (ii) construct
Uu and Uv by taking alternate edges of the trail, with the first edge in Uv and the last edge in Uu.
Also split a copy of each even multiplicity edge of U −uv into each of Uu, Uv. As in part (ii) u and
v have degree f(u) and f(v)− 1 in Uv, and f(u) − 1 and f(v) in Uu. The subgraph Uu = Uv + uv
is an fu-factor, and Uv = Uu + uv is an f v-factor. Clearly U + uv can be partitioned into into Uu

and Uv. 2

The next lemma shows how the maximum weight unifactor gives the first blossom (as in Section
4). As with the preceding lemma and corollary we will give a more involved argument for the general
case. Call any subgraph Fv, F v, v ∈ V a maximum perturbation of f . For brevity the next lemma
and its proof refer to “elementary blossom” when we actually mean the f -odd pair of the elementary
blossom.

Lemma 5.6 Every maximum perturbation F lv respects the elementary blossom of a maximum
2f -unifactor.

Proof: Let U be a maximum weight 2f -unifactor. Let C be the circuit of U , I = (δ(C) ∩ U)/2,
and B = (C, I) the elementary blossom of U .

Take any vertex v ∈ C. The proof of Lemma 5.4 shows Fv and F v both consist of alternate
edges of C plus the edges (U − C)/2. In particular we have this property:

(*) Flv − γ(C) = (U − γ(C))/2.

From now on the only property of a maximum perturbation F l v that we use, aside from the
definition, is (*). This will allow us to claim the proof holds in the general setting below.

(*) shows Flv ∩ δ(C) = I. So Fv and F v both respect B.
To complete the proof take any u /∈ C and consider a perturbation flu and maximum flu-factor

Flu. Taking any v ∈ C, Flu ⊕ Fv is an alternating uv-trail. Let T be the subtrail from u to the
first vertex in C, say x. Let e (g) be the first (last) edge of T , respectively. (Note we may have
e = g. Also T may contain edges incident to I.)

Observe

flu =

{
fu e ∈ Fv − Flu,
fu e ∈ Flu − Fv.

Choose the perturbation

flx =

{
fx g ∈ Flu − Fv,
fx g ∈ Fv − Flu.

Let Flx be the corresponding maximum flx-factor. (*) implies Flx is identical to Fv on edges not
in γ(C). So the edges of T alternate between and Flu and Flx.

In Flu ⊕ T , the two displayed equations show u has degree f(u) and x has degree flx(x). Thus
Flu ⊕ T is an flx-factor. So it weighs no more than Flx, i.e.,

w(Flu ⊕ T) = w(Flu) + w(T ∩ Flx) − w(T ∩ Flu) ≤ w(Flx).

In Flx⊕ T , the two displayed equations show u has degree flu(u) and x has degree f(x). Thus
Flx ⊕ T is an flu-factor and it weighs no more than Flu:

w(Flx ⊕ T) = w(Flx) − w(T ∩ Flx) + w(T ∩ Flu) ≤ w(Flu).

20

−W3

a
a

1

(a)

3

1

0

−W1

a
b

α

a α

1

1−W2

−W2

(b)

b

d

e

f

c

(c)

2

Figure 11: Formation of contracted graphs for Fig.6: new weights and new degree constraints.
Heavy edges are in the blossom’s I set.

Combining the two preceding displayed inequalities shows equality holds throughout. This implies
Flu = Flx ⊕ T . It respects B since Flu ∩ δ(C) = I ⊕ g. 2

We shall iterate this construction as in Section 4, contracting each blossom B as it is found.
Fig.11 shows the three contractions for our example graph. The edge weights in this figure will be
explained in Section 5.3, but we note that W1 ≪ W2 ≪ W3. As before α = V − a.

We shall see that contracting B forms a new vertex B with a loop B B representing B. There
will be a corresponding unifactor U whose circuit is B B. Such a unifactor represents the already-
discovered B and is thus redundant. A unifactor whose circuit is not a loop B B that was introduced
by contracting a blossom is an irredundant unifactor. Each iteration will choose the maximum
weight irredundant unifactor.

For example after the contraction of Fig.11(a), the two unifactors of Fig.9 correspond to uni-
factors of weight 4 − W1 for the circuit on a and 3 − 2W1 for the circuit on α. The former is the
maximum unifactor but the latter is the maximum irredundant unifactor. Its circuit is contracted
in Fig.11(b).

We now give properties of the maximum irredundant unifactor. As the procedure forms con-
tractions of the original graph G, it is convenient to call a vertex (or edge) of such a contraction
original if it is the image of an original vertex (edge) of G. A vertex that is not original is the
contraction of a blossom, and is called a blossom vertex; its corresponding (nonoriginal) loop is a
blossom loop. Section 5.3 specifies edge weights in the contracted graph; they will be pertubed to
maintain our assumption of uniqueness.

The preceding results that involve the globally maximum weight unifactor need to be extended,
specifically, the second assertion of Lemma 5.3, and Lemma 5.6. For Lemma 5.3 we note that
the circuit of the maximum irredundant unifactor need not be a cycle, because of blossom loops.
However the original edges in the circuit form a cycle. The proof is essentially the same as Lemma
5.3. We will now prove another version of Lemma 5.4 and the extended version of Lemma 5.6
(Lemma 5.7 and Corollary 5.8).

When we contract the elementary blossom B = (V (B), C(B), CH(B), I(B)), the new vertex B
gets degree constraint f(B) = |I(B)| + 1. (See Fig.11.) The blossom loop B B corresponds to an

21

elementary blossom with odd circuit B B, no chords, and incident edges I(B). (Clearly f(B) has
the required value.)

Section 5.3 gives the remaining details of how the new graph is formed when B is contracted.
The current section needs just one more of these details: The weights of edges in δ(V (B)) change
in an unexpected way. However Lemma 5.12(ii) shows that if v is the contracted vertex for B, the
maximum perturbation Fv in the new graph is the image of Fx for every x ∈ V (B). Furthermore
F v = Fv + vv, so aside from the loop it is the image of each F x, x ∈ V (B). We use this property
in the next lemma. (The proof of Lemma 5.12(ii) is simple arithmetic and does not rely on any
previous lemmas.) Of course this property implies that in the new graph, Fv + F v, the maximum
unifactor containing v in its circuit, is the redundant unifactor with circuit vv.

Recall from the proof of Lemma 5.4 that a unifactor U whose circuit C contains v can be written
as U = Uv + Uv for an fv-factor Uv and an f v-factor Uv.

Lemma 5.7 Let U be the maximum weight irredundant 2f -unifactor that contains v in its circuit
C, if such exists. Either Uv = Fv or Uv = F v.

In Fig.11(a) the maximum irredundant unifactor containing the contracted vertex ā in its circuit
has the Hamiltonian circuit ābcdefbā (the unifactor weighs 2 − 2W1). This illustrates the lemma
with U ā = F ā (and Uā 6= Fā).

The lemma is obvious if v is an original vertex. For a blossom vertex v, note that exactly one
of the alternatives holds (since v’s maximum unifactor is redundant). Furthermore vv /∈ U implies
Uv = Fv , and vv ∈ U − C implies Uv = F v. The case vv ∈ C is discussed after the proof.

Proof: Let Nv be the maximum weight fv-factor such that Nv +F v is an irredundant 2f -unifactor
containing v in its circuit. Define Nv similarly. In general these perturbations needn’t exist.

Claim Either Nv exists and w(Uv) ≤ w(Nv), or Nv exists and w(Uv) ≤ w(Nv).

Proof: Uv + F v is a 2f -unifactor containing v in its circuit (since Uv ⊕ F v contains at least one
edge of δ(v)). If this unifactor is redundant its circuit must be vv, and so Uv = Fv . Similarly if
Uv +Fv is redundant Uv = F v. We cannot have both Uv = Fv and Uv = Fv , since U is irredundant.
So Uv or Uv gives the claim. ♦

By symmetry assume the claim gives Nv. Then

w(Nv) + w(F v) ≤ w(U) = w(Uv) + w(Uv) ≤ w(Nv) + w(F v).

We conclude equality holds throughout, so Uv = F v. 2

Recall that when vv ∈ C there are two choices for Uv (see the discussion after the proof of
Lemma 5.4). It can be seen that one choice has Uv = Fv and the other has Uv = F v. (We will not
use this fact.) An example is Fig.11(c): F ᾱ consists of loops āā and ᾱᾱ plus the image of ab1. The
irredundant unifactor of the figure has circuit with edges ᾱᾱ, ᾱā, āᾱ. Traversing the image of ab1

before ab0 gives Uᾱ = Fᾱ while ab0 before ab1 gives U ᾱ = F ᾱ.

Corollary 5.8 Suppose every maximum perturbation respects every loop blossom. Then every max-
imum perturbation Flv respects the elementary blossom of a maximum irredundant 2f -unifactor.

22

b
a

1

1

1

1

1
4 4

ba

ab

ab ab

ab

ab

Figure 12: Example for Lemma 5.10. The edges in Fa and Fb are labelled a and b respectively.
Vertex labels give degree constraints f .

Proof: As mentioned, the proof of Lemma 5.6 holds as long as every vertex of the circuit C of the
unifactor satisfies (*). (The proof does not rely on the choice of unifactor U). Lemma 5.7 shows
this is true. 2

The circuit of the unifactor of Fig.11(c) has two original edges ab, with ab1 ∈ Fā ∩ Fᾱ and
ab0 ∈ Fā − Fᾱ. This illustrates part (ii) of the next lemma.

Lemma 5.9 (i) Any circuit contains either an original vertex or an edge uv /∈ Fu ⊕ Fv.
(ii) The circuit of a maximum irredundant unifactor contains an original edge uv /∈ Fu ⊕ Fv.

Proof: Let C be a circuit in (i) or (ii). A loop vv does not belong to Fv ⊕ Fv . So in part (i)
assume C has no loops.

Take any original edge uv of C. We can assume uv ∈ Fu⊕Fv (if not we are done). By symmetry
let uv ∈ Fv − Fu. In part (i) we can assume v is a blossom vertex (if not we are done). In part
(ii) v must be a blossom vertex (if not Lemma 5.4 shows uv /∈ Fv). The rest of the argument is
identical for both parts.

Corollary 5.5(ii) shows Fu = F v − uv. Let L be the set of all loops xx that are blossoms (e.g.,
vv ∈ L). Then

Fu − L − uv = Fv − L − uv. (7)

Now let T be a trail of edges uv satisfying (7). Let T have first vertex a and first edge ab with
ab ∈ Fa − Fb. We will show T cannot return to a after edge ab. Applying this to C gives a
contradiction.

For an edge uv ∈ T − ab, suppose ab /∈ Fu. Applying (7) to uv shows ab /∈ Fv. Since ab /∈ Fb,
we conclude that ab /∈ Fu for every vertex u ∈ T − a. Now ab ∈ Fa shows T cannot return to a. 2

For matchings our construction terminates at the obvious point – when the graph has been
contracted to a vertex. The following lemma gives the criterion for termination for f -factors.
Fig.12 gives an example critical graph with no irredundant unifactor.

Lemma 5.10 A critical graph has no irredundant 2f -unifactor iff every vertex is a blossom vertex
and every original edge uv is in Fu ⊕ Fv iff every circuit is the loop of a contracted blossom.

Proof: Numbering the assertions in order as (i), (ii), (iii), we will show (i) =⇒ (ii), (ii) =⇒ (iii),
(iii) =⇒ (i).

23

(i) =⇒ (ii): Suppose there is no noloop unifactor. A vertex that is not a loop blossom gives an
irredundant unifactor (Lemma 5.4). Hence every vertex is a loop blossom. Take any original edge
uv. uv /∈ Fu ∪Fv gives an irredundant unifactor (Corollary 5.5(i)), as does uv ∈ Fu ∩Fv (Corollary
5.5(iii)). Thus uv ∈ Fu ⊕ Fv .

(ii) =⇒ (iii): Suppose every vertex is a blossom vertex and every original uv belongs to Fu⊕Fv .
Lemma 5.9(i) shows there is no circuit of original edges. A circuit that is not a contracted blossom
contains a circuit of original edges.

(iii) =⇒ (i): Obvious. 2

Using Lemma 5.9(ii) in a very similar argument (like (i) =⇒ (ii)) gives the following.

Corollary 5.11 If a maximum weight irredundant 2f -unifactor exists then the maximum such is
either Fu + Fv + uv for some original edge uv /∈ Fu ∪ Fv or F u + F v − uv for some original edge
uv ∈ Fu ∩ Fv.

5.3 The construction

This section gives the details of how the contracted graph for a blossom is formed. Iterating this
process gives our complete construction for deriving the dual variables.

Given the elementary blossom B = (C, I) of a maximum irredundant 2f -unifactor U , define
graph G to be G with the cycle C contracted to a vertex C. So loop C C exists. As usual we denote
edges incident to C by their corresponding edges in G. Define degree constraints in G by

f̄(v) =

{
f(v) v ∈ V − C,

|I| + 1 v = C.

This makes G critical: For any v ∈ V let F be an f lv-factor in G that respects B (e.g. F lv,
Corollary 5.8). F corresponds to a subgraph F̄ in G that is an f̄lv-factor for v ∈ V − C and can

be either an f̄C-factor or an f̄C-factor for v ∈ C. Specifically, let δ+(C) denote the set of all edges
having C as one or both ends, i.e.,

δ+(C) = δ(C) + C C.

Then the edges of F̄ having C as an end are

F̄ ∩ δ+(C) =






I + e v ∈ V − C, e is some edge in δ(C) − I, or

I − e + C C v ∈ V − C, e is some edge in I;

I v ∈ C, F̄ is an f̄C-factor,

I − e + C C v ∈ C, F̄ is an f̄C-factor.

(8)

Next we define edge weights in G. Observe that the first case of (8), adding an edge incident
to the blossom, is similar to matching. The second case, dropping an edge, is new. Edge weights
for the second case cause complications not present in matching. So to define weights w(e) in G,
for v ∈ C let cv = w(Fv ∩ γ(C)), cv = w(F v ∩ γ(C)). Let

J =
∑

{cu : u ∈ C, uv ∈ I} − W.

This sum is over a multiset, i.e., each edge uv ∈ I contributes cu. W is a sufficiently large number.
Define

24

w(e) =






w(e) e /∈ δ(C),

w(e) − cv e ∈ I, v = C ∩ e,

w(e) + cv + J e ∈ δ(C) − I, v = C ∩ e,

J e = C C.

The weights in Fig.11 follow easily using ca = 0 for (a), cb = 1 and cb = 1 − 1 = 0 for (b). In
general the weights have these properties:

Lemma 5.12 Let U be the maximum irredundant 2f -factor of graph G, with B the elementary
blossom of U . Consider the graph G with weights w, formed by contracting B.

(i) Any vertex v ∈ V − C has a unique maximum fv-factor and a unique maximum f v-factor,
denoted F̄v and F̄ v respectively. They are the image of Fv and F v respectively, and satisfy

w(F̄v) = w(Fv) − W, w(F̄ v) = w(F v) − W.

(ii) C has a unique maximum f̄C-factor and a unique maximum f̄C-factor, denoted as F̄C and

F̄C respectively. For any vertex v ∈ C,

w(F̄C) = w(Fv − γ(C)) −
∑

{cu : u ∈ C, uv ∈ I}, w(F̄C) = w(Fv − γ(C)) − W.

Furthermore F̄C = F̄C + C C and F̄C is the image of Fv − γ(C) = F v − γ(C).
(iii) Let uv be an original edge in G − γ(C), with image ūv̄ in G (i.e., v̄ may be C). Assume

uv /∈ Fu ⊕ Fv. Let T (T) be the maximum irredundant 2f -unifactor in graph G (G) that contains
uv (ūv̄) in its circuit, respectively. Then T is the image of T and

w(T) = w(T) − 2W.

Fig.11 illustrates the lemma: For (i) with v = b, in Fig.11(a) w(Fb) = 2−W1, w(F b) = 1−W1

(Fig.7 gives the original weights 2 and 1). For (ii) with C = α and v = b in (b), w(Fᾱ) =
1 − W1 = (1 − W1) − 0, w(F ᾱ) = 1 − W1 − W2 = (1 − W1) − W2. For (iii) with uv = ab1, in (a)
w(T) = (1−1)+2−2W1 = 2−2W1 and in (b) w(T) = (1+(1−W2)−W2)−2W1 = 2−2W1−2W2.

Proof: (i): Let F̄ be F̄v or F̄ v. The definition of W implies F̄ contains the fewest possible number
of edges in δ+(C)− I. This number is ≥ 1 (f̄(C) = |I|+ 1). As mentioned above Flv gives a factor
in G that contains exactly one of those edges. Hence F̄ contains exactly one edge of δ+(C) − I.
Since f̄(C) = I + 1, F̄ satisfies the first or second case of (8). Let the edge e in (8) correspond to
the edge xy of G with x ∈ C.

Suppose F̄ satisfies the first case. Its edges incident to C contribute their weight in G plus

cx + J −
∑

{cu : u ∈ C, uv ∈ I} = cx − W.

Since F̄ has maximum possible weight, it is the image of the the appropriate maximum perturbation
on G, i.e., that F̄v is identical to Fv − γ(C), w(F̄v) = w(Fv)− W , and similarly for F̄ v, as claimed
in the lemma.

Suppose F̄ is in the second case. The extra contribution for edges incident to C is

J −
∑

{cu : u ∈ C, uv ∈ I − xy} = cx − W.

The rest of the argument is the same as the first case.

25

(ii): The proof is similar but simpler: F̄C must contain I and no edges of δ+(C) − I. Each
factor Flv, v ∈ C, induces the same f̄C-factor in G. It contains I and it has maximum weight. So
F̄C is the image of Flv − γ(C), and its weight is given in (ii).

F̄C must contain I + C C and no other edges of δ+(I). Again we get the weight of (ii), as well

as F̄C = F̄C + C C.

(iii): If uv ∈ δ(C) choose v as the end in C. So we always have u ∈ V − C. Consider the two
possibilities for the assumption uv /∈ Fu ⊕ Fv :

Case uv /∈ Fu ∪ Fv: This case holds iff ūv̄ /∈ F̄u ∪ F̄v (parts (i) and (ii)). Corollary 5.5(i) shows T
and T both exist, T = Fu + Fv + uv and T = F̄u + F̄v + ūv̄. Thus T is the image of T as claimed.

Lastly we check the claim on weights. Suppose uv /∈ δ(C). Using part (i) for u and v, plus the
definition of w(uv), gives

w(T) = (w(Fu) − W) + (w(Fv) − W) + w(uv) = w(T) − 2W

as claimed.
Suppose v ∈ C. Using part (i) for Fu, part (ii) for F̄C and Fv, plus the definition of w(uv) for

uv ∈ δ(C) − I, gives

w(T) = (w(Fu) − W) +

(
w(Fv − γ(C)) −

∑
{cu : u ∈ C, uv ∈ I}

)
+ (w(uv) + cv + J)

= w(Fu) − 2W + cv + w(Fv − γ(C)) + w(uv) = w(T) − 2W

as claimed.

Case uv ∈ F u + F v − uv: The argument is similar to the first case. The subcase uv /∈ δ(C) is as
above. The equation for the second subcase is

w(T) = (w(F u) − W) + (w(F v − γ(C)) − W) − (w(uv) − cv)

= w(F u) + w(F v) − 2W − w(uv) = w(T) − 2W.

2

Our construction works by repeating the following step as long as an irredundant unifactor
exists:

Create the elementary blossom B corresponding to the maximum irredundant 2f -unifactor.
Then change the graph to G and repeat.

The following definition encapsulates the structure of the blossoms built by the procedure. (It
is included mainly for possible future use, e.g., the Appendix uses it in presenting an analog of
procedure blossom match to construct any maximum perturbation Flv in linear time.) Consider
a graph G with degree constraint function f . The definition refers to contractions of G denoted as
G. For notational simplicity we will not distinguish between an edge of G and its image in G. Also
if B is a set of one or more vertices of G, B refers to the image of B in G. Finally (to motivate
a set we use) note that a blossom loop CC may act like a member of γ(C) or possibly δ(C) (e.g.,
δ+(C)). Because of the latter we will use a set I(C C) that acts like I(C).

26

Definition 5.13 A blossom forest B is a forest where each node B represents a vertex set V (B) ⊆
V (G) and is labelled by three disjoint subsets of E(G): C(B), CH(B) and I(B). The leaves of B
are identified with the vertices of G. An interior node of B is called a blossom (node). For any
node B, V (B) is the set of leaf descendants of B.

A leaf v ∈ V satisfies

I(v) ⊆ δ(v,G) ∪ γ(v,G), d(v, I(v)) = f(v) + 1.

Also V (v) = C(v) = {v} and CH(v) = ∅.
Consider a blossom node B with children Bi, i = 1, . . . , k. Form graph G as follows. If Bi is a

blossom node contract it, forming vertex Bi. As usual G contains the loop BiBi. (This holds even
if |V (Bi)| = 1.) Set f(Bi) = |I(Bi)| + 1. If Bi is a leaf corresponding to vertex v then Bi is v.

B corresponds to an elementary blossom ({Bi}, C(B), CH(B), I(B)) in G. To describe C(B)
we specify C(B)∩Bi, the edges of C(B) incident to an arbitrary child Bi, by considering two cases:

Case k > 1: If Bi is a blossom then C(B) ∩ Bi consists of either
(i) two edges in I(Bi), or
(ii) two edges in δ(Bi) − I(Bi), or
(iii) an edge in I(Bi), loop BiBi, and an edge in δ(Bi) − I(Bi).

If Bi is a leaf of B then (i) holds.

Case k = 1: B’s unique child is required to be a leaf, say v. C(B) is a loop vv that belongs to
I(v).

To specify the rest of the blossom let I(BiBi) = {BiBi} if k > 1 and Bi is a blossom satisfying
(i) above; in all other cases I(BiBi) = ∅. Then

I(B) =
⋃

i

I(Bi) ∩ δ(V (B)), CH(B) =
⋃

i

(I(Bi) ∪ I(BiBi)) ∩ γ(V (B)) − C(B).

We give two simple properties of the definition.

Lemma 5.14 Consider any blossom B in Definition 5.13.
(i) (V (B), I(B)) is an f -odd pair.
(ii) An edge in CH(B) incident to Bi belongs to I(Bi) ∪ I(BiBi).

Proof: (i) Any internal node B forms an elementary blossom on its children Bi, so the correspond-
ing odd pair gives

f({Bi}) + |I(B)| ≡ 1. (9)

Thus f({Bi}) ≡ |I(B)| + 1 = f(B). So in (9), if Bi is a blossom with children Cj, we can replace
the term f(Bi) that contributes to f({Bi}) by f({Cj}). Doing this repeatedly eventually gives
f(V (B)) + |I(B)| ≡ 1 as desired.

(ii) The equation for CH(B) in Definition 5.13 allows the possibility that edges in I(Bj), j 6= i,
are chords incident to Bi. The lemma asserts this is not the case.

B is an elementary blossom so by definition, each child Bi of B satisfies

f(Bi) = d(Bi, C(B))/2 + d(Bi, CH(B) ∪ I(B)).

We will consider several cases. In each case every term in this equation will be known except for
d(Bi, CH(B)), where we only know a lower bound (from edges of I(Bi)∪ I(BiBi) in CH(B)). We

27

shall see that substituting all known values gives equality of the two sides. Thus the lower bound
holds with equality, and no Bj has a chord incident to Bi. In what follows LHS (RHS) refer to
the left- and right- hand sides of the equation, respectively.

First suppose Bi is a blossom. So LHS = |I(Bi)| + 1.
Suppose possibility (i) of Definition 5.13 holds. Using d(Bi, I(BiBi)) = 2, the definition shows

RHS ≥ 1 + (|I(Bi) ∩ γ(B)| − 2) + 2 + |I(Bi) ∩ δ(B)| = 1 + |I(Bi)| = LHS.

If (ii) holds then

RHS ≥ 1 + |I(Bi) ∩ γ(B)| + |I(Bi) ∩ δ(B)| = 1 + |I(Bi)| = LHS.

If (iii) holds then

RHS ≥ 2 + (|I(Bi) ∩ γ(B)| − 1) + |I(Bi) ∩ δ(B)| = 1 + |I(Bi)| = LHS.

Suppose Bi is a vertex v. Then LHS = d(v, I(v))− 1 = 1 + (d(v, I(v) ∩ γ(v))− 2) + d(v, I(v) ∩
δ(v)) = RHS. 2

Now we check that the blossoms of our construction give a forest satisfying Definition 5.13.
For a vertex v, the minimal blossom B containing v has f(v) + 1 edges incident to v in C(B) ∪
CH(B) ∪ I(B). This gives the set I(v) of the definition. It is easy to see that v satisfies the rest
of the definition (i.e., property (i)).

To check an interior node B we introduce notation that will be handy later on. Recall B is
created as the elementary blossom of a maximum irredundant unifactor. Let

G(B), U(B), and V (B)

denote the contraction of G wherein B is created, the unifactor, and the set of vertices of G(B)
in B, respectively. So C(B) is the circuit of U(B) on V (B), and CH(B) (I(B)) is the set of
chords (incident edges) of U(B) on this circuit, all at half multiplicity. These sets are defined in
the construction of the elementary blossom of U(B) (Lemma 5.3), and they are the same-named
sets in Definition 5.13. In that definition V (B) is denoted {Bi} and V (B) is the image of V (B)
in G(B). As an example in Fig.5(b), V (B1) has B2 contracted to B2, and C(B1) is the triangle
B2, d, e.

The discussion before and after Lemma 5.7 establishes properties (i)–(iii) of the definition for
any child Bi: To repeat, letting Bi be the vertex of that discussion, vv /∈ U implies Uv = Fv and
property (ii) above holds; vv ∈ U − C implies Uv = F v and (i) holds; if vv ∈ C then it is easy to
see (iii) holds.

Finally Lemmas 5.4 and 5.7 give the equations for CH(B) and I(B).
Next we examine the odd pair (V (B), I(B)) of Lemma 5.14(i) applied to our construction.

(This pair will be used to define the z duals.)

Lemma 5.15 The odd pair (V (B), I(B)) for a blossom B covers edge uv of G iff B is an ancestor
of both u and v, or B is an ancestor of exactly one of u, v say v, and uv ∈ Fv.

Proof: Clearly u, v ∈ V (B) iff B is a common ancestor of u and v. Consider an edge uv of G
whose image ūv̄ in G(B) belongs to I(B). This holds iff ūv̄ is incident to V̄ (B), say v̄ ∈ V̄ (B) 6∋ ū,
and ūv̄ ∈ U(B). The former holds iff v ∈ V (B) 6∋ u. The latter holds iff ūv̄ ∈ Fv̄ . Lemma 5.12(ii)
shows this last condition is equivalent to uv ∈ Fv . 2

28

5.4 Deriving the dual variables

We first define the dual variables. Let B be the final blossom forest of our construction. The term
“blossom” always refers to a blossom of B. Take any blossom B in B. p(B) denotes the parent of
B in B.

Recall that U(B) contains an original edge uv /∈ Fu ⊕ Fv in its circuit (Lemma 5.9(ii)). So
U(B) satisfies the hypothesis of Lemma 5.12(iii). Applying this lemma repeatedly shows U(B) is
the image of a 2f -unifactor in G, which we denote as U(B). We illustrate by noting the weights
w(U(B)) and w(U(B)) for Fig.11: These values are respectively 4 and 4 for (a), 3− 2W1 and 3 for
(b), 2 − 2W1 − 2W2 and 2 for (c).

The reader should heed the following remark, even though it is not needed in the formal proof.
As stated above I(B) consists of the edges of U(B) that are incident to V (B). Equivalently I(B)
is the set of all edges of U(B) incident to V (B). But I(B) need not be the set of incident edges
of the elementary blossom of U(B). The reason is that the circuit of U(B) needn’t span V (Bi) for
Bi a child of B. For instance in Fig.5(b), V (B2) = {a, b, c} and the circuit of U(B1) is {c, d, e}.
(In contrast in Fig.11 for B the blossom of (c), with child blossom α, U(B) spans the entirety of
α = {b, c, d, e, f}.)

For simplicity we refer to the odd pair (V (B), I(B)) as B, and we will shorten z((V (B), I(B))
z(B). Define

y(v) = −w(Fv) v ∈ V,

z(B) =






w(U(B)) B a root of B,
w(U(B)) − w(U(p(B))) B a nonroot,
0 otherwise.

(10)

Note these duals are defined on G (but not the contracted graphs G). Also in this definition w
denotes the given function on G with the perturbations ǫi omitted, i.e., we set ǫ to 0 in any context
dealing with given weights. The duals of Fig.6(b) illustrate these formulas: y values come from
Fig.7. z is computed using the weights w(U(B)) noted above from Fig.11.

Clearly any blossom B has

w(U(B)) = z{C : V (B) ⊆ V (C)}. (11)

Observe that z(B) ≥ 0 for any nonroot blossom B: Lemma 5.12(iii) shows U(p(B)) is the
image of an irredundant unifactor in G(B). So it weighs less than U(B) in G(B). Now applying
Lemma 5.12(iii) repeatedly shows it weighs less than U(B) in G, i.e., w(U(p(B)) ≤ w(U(B)) as
desired.

Now consider a root blossom B. z(B) is certainly nonnegative if all weights in G are nonnegative.
We can assume this wlog, since the number of edges in an flv-factor is fixed. Alternatively it can
be seen from Lemma 5.10 that any flv-factor respects any root blossom of B. (The final graph
has a unique flv-factor, since the symmetric difference of two flv-factors consists of cycles.) So
nonnegativity of z(B) is not required in the upperbounding equation (3).

Our main theorem below refers to the optimum f -factor structure. It is defined just like the
optimum matching structure, and the details are tedious. Instead of presenting them we will be
content to prove that our duals are optimal for each of our maximum perturbations Flv (recall the
definition of optimal duals right after equation (3).)

Theorem 5.16 For a critical graph G, duals y, z and blossom forest B form an optimum f -factor
structure.

29

Proof: We need one more notation: For a vertex v, let Bv be the minimal blossom containing
v in its circuit. The above discussion shows that in G, U(Bv) is the maximum weight unifactor
containing v in its circuit. So Fv + F v = U(Bv).

Let uv be an edge of G. We will verify the correct relation between ŷz(uv) and w(uv).

Claim 1 The duals are tight on any edge uv ∈ Fv − Fu.

Corollary 5.5(ii) shows Fu = F v − uv. Equivalently, Fu + Fv + uv = F v + Fv = U(Bv). Taking
weights shows w(uv) = w(U(Bv)) + y(u) + y(v). Lemma 5.15 shows uv is covered by the ancestors
of Bv and no other blossoms. So (11) implies tightness. ♦

Given Claim 1, from now on we assume uv /∈ Fu ⊕ Fv. Thus uv belongs to some unifactor
(Corollary 5.5(i) and (iii)) and some blossom B has u, v ∈ V (B). Let B be the nearest common
ancestor of u and v in B. uv belongs to either C(B), CH(B), or to no C or CH set of any blossom
at all. Claims 2–4 treat these three cases. In these claims ū and v̄ denote the image of u and v in
G(B), respectively.

Claim 2 The duals are tight on any edge uv ∈ C(B) for blossom B.

U(B) is the maximum unifactor in G(B) containing ūv̄ in its circuit. Applying Lemma 5.12(iii)
repeatedly shows U(B) is the maximum unifactor in G containing uv in its circuit. We need only
check the two cases below.

Case uv /∈ Fu∪Fv: Corollary 5.5(i) shows U(B) = Fu +Fv +uv. Taking weights shows w(U(B))+
y(u)+y(v) = w(uv). Lemma 5.15 shows uv is covered by the ancestors of B and no other blossoms.
Applying (11) shows tightness.

Case uv ∈ Fu ∩ Fv : Corollary 5.5(iii) shows U(B) = F u + F v − uv and taking weights gives
w(U(B)) = w(F u) + w(F v) − w(uv). Adding and subtracting w(Fu) + w(Fv) on the right, and
rearranging, gives

w(uv) = w(U(Bu)) + w(U(Bv)) − w(U(B)) − w(Fu) − w(Fv).

Since uv ∈ Fu ∩ Fv , Lemma 5.15 shows the blossoms covering uv are the ancestors of Bu or Bv

(and no others). Recall B is chosen as the nearest common ancestor of u and v. Applying (11) to
Bu, Bv and B shows w(U(Bu)) + w(U(Bv)) − w(U(B)) = z{C : blossom C covers uv}. With the
displayed equation this gives tightness. ♦

Claim 3 The duals underrate any edge uv ∈ CH(B) for blossom B.

U(B) does not contain ūv̄ in its circuit. So let T be the maximum irredundant unifactor
containing ūv̄ in its circuit in G(B). Obviously T weighs less than U(B). Lemma 5.12(iii) shows
T , the maximum irredundant unifactor in G containing uv in its circuit, weighs less than U(B).

The hypothesis also shows ūv̄ ∈ Fū ∩ Fv̄, by Lemmas 5.4 and 5.7. Using Lemma 5.12(i)–(ii)
repeatedly shows uv ∈ Fu ∩ Fv. Corollary 5.5(iii) shows T = F u + F v − uv. Taking weights shows
w(U(B)) ≥ w(T) = w(F u) + w(F v)− w(uv). As before adding and subtracting w(Fu) + w(Fv) on
the right and rearranging gives w(uv) ≥ w(Bu) + w(Bv) − w(U(B)) − w(Fu) − w(Fv). Now the
argument follows Claim 2. ♦

30

Claim 4 The duals dominate any edge uv /∈ C(B) ∪ CH(B) for blossom B.

(In this claim recall that B is the nearest common ancestor of u and v.) By definition ūv̄ /∈ U(B).
So let T be the maximum irredundant unifactor containing ūv̄ in its circuit in G(B). Obviously
it weighs less than U(B). Lemma 5.12(iii) shows T , the maximum irredundant unifactor in G
containing uv in its circuit, weighs less than U(B).

ūv̄ /∈ U(B) implies ūv̄ /∈ Fū ∪ Fv̄, by Lemmas 5.4 and 5.7. Using Lemma 5.12(i)–(ii) re-
peatedly shows uv /∈ Fu ∪ Fv . Corollary 5.5(i) shows T = Fu + Fv + uv. Taking weights shows
w(U(B)) ≥ w(T) = w(Fu) + w(Fv) + w(uv) as desired. ♦

To complete the proof take any maximum perturbation Flv, v ∈ V . We will show Flv and
y, z satisfy the optimality conditions of Section 5.1. Flv consists of edges in sets C(B), CH(B)
and I(B) (Definition 5.13, Lemmas 5.4 and 5.7). These edges are underrated (Claims 1–3). The
remaining edges are dominated (Claims 1,2,4).

Finally we must show Flv respects each pair (V (B), I(B)) of our duals. Flv̄ respects (V (B), I(B))
in graph G(B) (Corollary 5.8, Lemma 5.12(i)–(ii)). Apply Lemma 5.1 (actually the paragraph fol-
lowing it) to graph G(B) to get Flv̄ ∩ δ(V (B)). Flv ∩ δ(V (B)) is the same set, in graph G. So
applying Lemma 5.1 in graph G shows Flv respects (V (B), I(B)).

Thus we have an optimum f -factor structure. 2

Now consider a graph G that has an f -factor F . (If a vertex has f(v) = 0 it is irrelevant so
delete it.) Let G+ be G with an additional vertex s and additional edges sv, v ∈ V plus loop ss,
all having weight 0. Extend f by setting f(s) = 1. G+ is critical: For vertex v ∈ V with edge
vv′ ∈ F, F − vv′ + v′s is an fv-factor, F + vs is an f v-factor, F and F + ss are respectively fs and
f s -factors. So the theorem gives an optimum structured factor on G+. Thus we have optimum
duals for an fs-factor on G+, i.e., an f -factor. We can delete s to consider these duals defined on
G. (A pair (C, I) with positive z and z ∈ C will no longer be an odd pair. Such pairs are needed
in the standard integral duals [13, Ch.32].)

Regarding uniqueness of the duals, as in previous sections the function y = −w(Fv) is canonical:
(4) shows that any optimal duals y, z for a critical graph satisfy (y, z)V − y(v) = w(Fv). The z
function is more complex and is analyzed in Section 5.5.

5.5 b-matchings, canonical and noncanonical duals

We review b-matching, a special case of f -factors, and then turn to the issue of uniqueness of the
optimum duals. Section 5.4 notes that optimum duals y, z for critical graphs have y unique up
to translation. This section analyzes z. It proves z is essentially unique for b-matchings. Then it
presents an f -factor problem that, in contrast, has a variety of optimum z duals.

Let G = (V,E) be an undirected multigraph with a function b : V → Z+. A perfect b-matching
is an assignment of a nonnegative multiplicity µ(e) to each edge e such that in the corresponding
multigraph, each vertex v has degree exactly b(v). When G has a weight function w : E → R, a
maximum b-matching is a perfect b-matching whose total weight

∑
µ(e)w(e) is as large as possible.4

A perfect b-matching on G corresponds to an f -factor on the multigraph constructed from G by
taking ≥ max{b(v)} copies of each edge of G. The linear program duals have two special properties
[13, Ch.31]:

First there are no underrated edges in any optimum duals. This follows since any edge e in a
maximum b-matching has a copy not in the b-matching. Hence e is tight.

4For maximum b-matchings, we could obviously assume G has no parallel edges, but loops are still allowed.

31

4

1

2

2

1

1

2
3

(a) Critical graph with f ≡ 1:
Nonzero edge weights and max-
imum weights w(Fv).

5

4

1

(b) Blossoms and z values.

1

5 4

(c) z with nonlaminar support.

Figure 13: For f -factors and b-matchings, z needn’t have laminar support.

Second the z duals can be restricted to b-odd pairs of the form (C, ∅). It is easy to see this holds
for optimum duals for a critical graph: By way of contradiction consider a pair (C, I) with v ∈ C,
e ∈ I, e′ a copy of e not in I, and F a maximum bv-factor. F respects (C, I) iff F ∩ δ(C) = I. But
F − e + e′ is a maximum bv-factor that does not respect (C, I).

Turning to uniqueness of z we start with the issue of laminarity. As in Section 4 an optimum
z function needn’t have laminar support. But Fig.5 is not a valid example for f -factors: If v
is the central vertex, no f v-perturbation respects both sets of Fig.5(c). Fig.13 remedies this.
The maximum perturbations respect all pairs of (b) and (c). In both duals edge vv is tight:
ŷz(vv) = 2(−3) + 10 = 4 = w(vv). The example is valid for b-matchings as well as f -factors.

We will show that assuming laminarity makes z unique for b-matching. We start with two
properties of f -factors. The properties hold a fortiori for b-matchings and they will be used in the
b-matching analysis. The properties will also give intuition for the f -factor example.

Let ET be the set of edges of G that are always tight,

ET = {e : ŷz(e) = w(e) for every pair of optimal duals y, z}.

(w is the unperturbed weight function and y, z are any duals that are optimal for it.)

Lemma 5.17 Let C be the circuit of an elementary blossom formed in some graph G. C contains
at most one edge not in ET . If such an edge uv exists then it is the unique original edge satisfying
uv ∈ C − (Fu ⊕ Fv), and C consists entirely of blossom vertices.

Proof: Any edge e ∈ F ⊕ F ′ for two maximum perturbations F,F ′ must be both underrated and
dominated by any optimal dual function. Hence e ∈ ET .

If C contains an original vertex v of G then every edge of C is in Fv ⊕F v and hence it is tight.
So the lemma holds in this case. (In particular the lemma holds when C is a loop blossom vv.)

Suppose C consists entirely of blossom vertices. Lemma 5.9(ii) shows C contains an original
edge uv /∈ Fu ⊕ Fv. If uv /∈ Fu ∪ Fv Corollary 5.5(i) implies every every edge of C(B) − uv is in
Fu ⊕ Fv, and hence it is tight. Corollary 5.5(iii) gives the same conclusion if uv ∈ Fu ∩ Fv.

We conclude C − ET contains at most one edge. Furthermore if uv is such an edge then any
original edge xy ∈ C − uv is in Fx ⊕ Fy, since otherwise the argument of the previous paragraph
makes uv tight. 2

Clearly the lemma shows that when uv ∈ C − ET , every nonloop edge xy ∈ C − uv belongs to
I(x) ⊕ I(y) (any nonloop edge is original).

32

Let EF be the set of edges of G belonging to some maximum perturbation,

EF =
⋃

{Fv ∪ F v : v ∈ V }.

(As usual Fv and F v denote the unique maximum weight subgraphs that we have defined.) Let Z
be the support of the z function of an arbitary pair of optimum duals.

Lemma 5.18 Any Z-set is connected by the edges of EF .

Proof: Suppose Z is the union of disjoint sets Z0, Z1 with no edge of EF joining them. Let I0

be the edges of I incident to Z0 and similarly for I1. Take v ∈ Z1. The maximum perturbation
Fv respects Z, so Fv ∩ δ(Z) = I. Thus for i = 0, 1, any edge of Fv incident to a vertex of Zi is in
γ(Zi)∪Ii. This makes f(Z0)+|I0| even and f(Z1)+|I1| odd. Choosing v ∈ Z0 gives the opposite. 2

We now prove the canonical duals are essentially unique for b-matching. For a dual function
y, z and a set of vertices S, let

z̄(S) = z{X : S ⊆ X}.
We use this notation for two types of sets S: edges (those being sets of two vertices) and sets in
the support of z (especially when the support is laminar).

Let Z be the support of z. Note that ŷz(e) = y(e) + z̄(e) since I = ∅ on Z. So e ∈ ET implies
z̄(e) = w(e)−y(e) for any optimal duals, i.e., z̄(e) does not depend on the choice of duals. Note also
that if Z is laminar and edge e ⊆ Z ∈ Z, then Z is the minimal Z-set containing e iff z̄(e) = z̄(Z).

As before, let G be a critical graph for b-matching, let y, z be an arbitrary set of optimal duals
and let y∗, z∗ denote our duals.

Theorem 5.19 If the support of z is laminar and z(G) = z∗(G) then z = z∗.

Proof: Let Z (Z∗) be the support of z (z∗). We will show Z = Z∗ and z̄ = z̄∗. Obviously
laminarity then proves z = z∗ as desired. The bulk of the argument treats the nonsingleton sets of
Z and Z∗.

Lemma 5.18 shows any nonsingleton Z-set contains an edge e ∈ EF . For b-matching the root
blossom of B contains every vertex (Lemma 5.10). So e ∈ C(A) ∪ CH(A) for some blossom A.

Claim 1 Let Z be the smallest Z-set containing edge e ∈ EF . If e ∈ C(A) ∪ CH(A) for blossom
A then A ⊆ Z.

Suppose A 6⊆ Z. Let A′ be a minimal blossom contained in A that crosses Z. (Possibly A′ = A.)
C(A′) contains (at least) two edges crossing Z, so some f ∈ C(A′) ∩ ET crosses Z (Lemma 5.17).
Laminarity of Z implies

z̄(f) < z̄(e)

and A′ ⊆ A implies
z̄∗(f) = z̄∗(A′) ≥ z̄∗(A) = z̄∗(e).

But f ∈ ET and e ∈ EF ⊆ ET give z̄(f) = z̄∗(f), z̄(e) = z̄∗(e). This makes the two displayed
inequalities contradictory. ♦

Claim 2 In Claim 1 choose e and A so A is maximal for Z. Then Z = A ∈ Z∗ and z̄(Z) = z̄∗(A).

33

By Claim 1 A ⊆ Z. Let f ∈ EF leave A. We can assume f ∈ C(D)∪CH(D) for some blossom
D (since as already noted the root blossom of B contains every vertex, Lemma 5.10). Since A ⊂ D
maximality implies f leaves Z. Lemma 5.18 shows A = Z.

Any edge f ∈ EF ∩ δ(A) has

z̄∗(f) = z̄(f) < z̄(Z) = z̄(e) = z̄∗(A).

Thus A is a maximal blossom with z̄∗ value z̄∗(A), i.e., A ∈ Z∗. This also shows z̄(Z) = z̄∗(A)
(even if f does not exist). ♦

We now show the desired conclusion holds for nonsingleton sets, i.e., Z and Z∗ contain the
same nonsingletons, and z̄ and z̄∗ agree on these sets. Claim 2 shows a nonsingleton of Z is in Z∗.
Conversely any nonsingleton B ∈ Z∗ is the smallest blossom containing any edge e ∈ C(B) ∩ EF .
If Z is the smallest Z-set containing e, Claim 1 shows B ⊆ Z. Z does not contain any edge
f ∈ EF ∩ δ(B), since

z̄(f) < z̄∗(B) = z̄∗(e) = z̄(e) = z̄(Z).

Thus Z = B. So the nonsingletons of Z∗ belong to Z.
We complete the proof by analyzing the singleton sets. Subtracting (4) from (4′) shows∑{z(C, I) : (C, I) ∈ I, v ∈ C} does not depend on the choice of optimum duals. In other

words any v ∈ V satisfies z̄(vv) = z̄∗(vv). Since z̄ and z̄∗ agree on nonsingletons this implies
z(vv) = z∗(vv), so Z contains vv iff Z∗ does. 2

We turn to the f -factor problem. Fig.14 gives a graph G where laminar optimum duals have
different z functions. We now explain the example.

Fig.14(a) shows G, f , and the edge weights. Note that each vertex has a weight 0 loop. To
check that G is critical it suffices to check each vertex v is in the cycle of a 2f -unifactor. Fig.14(b)
shows the loop vv is the cycle of such a unifactor. For instance the unifactor for a consists of
loop aa and the 4 edges labelled by a, each with multiplicity 2. The unifactor for b is symmetric.
Similarly for the other vertices.

In addition to these five “loop” unifactors there are unifactors based on the 5-cycle acedba. An
even number of loops can be added, but the weight of the unifactor remains 4. The weights of
all unifactors are shown in Fig.14(b). These weights give the maximum unifactor containing each
vertex and each edge, justifying the dual values shown in Fig.14(c).

Fig.14(c) shows the sets I(cc) and I(dd) each contain two edges and all other blossoms have
empty I sets. So if C is the 5-cycle, every nonloop edge xy ∈ C − ab belongs to I(x) ⊕ I(y). We
show below that ab /∈ ET . In other words our example is fashioned after the nontight alternative
in Lemma 5.18, and the remark following it. In fact the reader will see that alternate duals like
those in Fig.14(d) and (e) are easily constructed for any similar blossom.

Fig.14(d) gives the blossoms and their z values, computed from (10). Fig.14(e)–(f) give alter-
native optimum z functions. As mentioned they are based on the fact that every edge besides ab
is covered by exactly one loop blossom. This allows us to decrease z on loop blossoms, increasing
z on compensating blossoms. Fig.14(f) does this for loop blossoms cc, dd, ee. Fig.14(e) does this
for all the loop blossoms. Here edge ab changes from tight to strictly dominated, ŷz(ab) = 0 > −2.
This is permissible since ab is not in any maximum weight perturbation. (In proof, a perturbation
containing ab has ≤ 1 weight 2 edge. Thus it weighs ≤ 2. The y values in Fig.14(c) show this is
never maximum.)

34

1

a
−2

1

b

c d

e

1 1

3 3

2 2

1

(a) Graph, f and nonzero edge weights.

4
b

c d

e

ace

ac

ae

ce

ace

a

6

10

8

(b) Unifactors for aa, cc, ee and the 5-cycle:
Weights and multiplicity 2 edges.

a
4

−4

b

c d

e

−3

−5

6

10

10

10

8

−5 10

−3

6

10

10

(c) y(v) and z̄∗(e).

4

b

c d

e

a
2

6

4

2

6

(d) Blossoms and z∗-values.

6

b

c d

e

a

4

2

4

(e) z with smaller support.

2

b

c d

e

a
2

2

2

4

4

2

(f) Nonblossoms in the support.

Figure 14: f -factors do not have unique z duals.

35

6 Conclusions

We present several precise questions for further research.

1. Can the combinatorial interpretation be used algorithmically? For example determinant-based
algorithms for matching are well-known [6, 9, 12]. The adjoint matrix can be used to get the weights
w(Mv) that give y dual variables (and the ζ values for z in general matching). Reducing processor
counts in parallel algorithms is one likely application.

2. The problems treated in this paper have many close relatives [13]. Do their dual variables have
similar combinatorial interpretations? Matroid intersection and matroid parity are good candidates.

3. Blossom-based algorithms for maximum weight matching [5] find the maximum weight unifactor
as their maximum weight elementary blossom. Can this unifactor be found faster?

A Finding an fv-factor

This appendix presents an algorithm that returns the fv- or f v-factor specified by a blossom tree
B (given B and the desired perturbation, fv or f v for an arbitrary vertex v). By definition this
perturbation respects every blossom of B. Hence it will have maximum weight for the blossom tree
constructed in Section 5. The algorithm operates in linear time. It is based on Definition 5.13.

Initialize the desired subgraph F to contain
⋃{I(v)}−⋃{C(B)}, where v and B range over all

leaf nodes and blossom nodes of B respectively. Then execute the procedure factor(R, v, a), where
R is the root node of B and a is 1 (−1) if we seek an f v- (fv-) factor, respectively. It will enlarge
F to the desired perturbation by adding the edges in circuits C(B) for blossoms B in B.

In general the recursive procedure factor(B,x, a) is called with B a blossom node of B, x ∈
V (B), and a = ±1. For a = 1 (a = −1) it adds the circuit edges of an fx- (fx-) perturbation to
F . Let B have children Bi in B, with x ∈ V (B1). The procedure starts at B1 and traverses the
circuit C(B), adding alternate edges of C(B) to F . The rule for choosing the edge incident to B1

that begins the traversal is given below. Before this we indicate how each blossom Bi, i 6= 1, is
processed. This depends on which of the possibilities (i) – (iii) of Definition 5.13 hold for Bi.

If (i) holds, one of the two edges of I(Bi) is not added to F ; let it be rs with r in Bi. If Bi is
a leaf, i.e., vertex r, this completes the processing of vertex r. Otherwise call factor(Bi, r, 1).

If (ii) holds, one of the two edges not in I(Bi) is added to F ; let it be rs with r in Bi. Call
factor(Bi, r,−1).

If (iii) holds, the two nonloop edges of δ(Bi) are either both added or both not added to F . If
they are not added then proceed as in possibility (i), else proceed as in possibility (ii).

Now we describe how the traversal begins at B1. If B1 is the leaf x then possibility (i) holds.
The parameter a indicates whether or not the two edges of I(x) (or the loop at xx, if k = 1) should
be added to in F . Thus the starting edge incident to x is chosen (arbitrarily) and the traversal
begins by adding it to F if a = 1, else not adding it. The traversal ends by processing the other
edge incident to x similarly.

Next suppose B1 is a blossom. In all cases the traversal adds all edges of C(B) ∩ I(B1) to F ,
and it ends by calling factor(B1, x, a). Further details depend on which possibility (i) – (iii) holds
for B1. If (i) holds, the traversal starts by adding one of the edges of I(B1) to F ; it ends by adding
the other to F . If (ii) holds, the traversal starts by following one of the edges not in I(B1), but it
is not added to F ; the traversal ends by processing the other edge incident to B1 similarly. If (iii)
holds, the traversal starts by adding the edge of I(B1) to F ; it ends by traversing the edge not in
I(B1) then traversing the loop B1B1, adding neither.

36

References

[1] N. Blum, A simplified realization of the Hopcroft-Karp approach to maximum matching in
general graphs, Tech. Rept. 85232-CS, Computer Science Department, University of Bonn,
2001.

[2] W.H. Cunningham and A.B. Marsh III, A primal algorithm for optimum matching, in Polyhe-
dral Combinatorics (dedicated to the memory of D.R. Fulkerson), M.L. Balinski and A.J. Hoff-
man eds., Math. Programming Study 8, North-Holland, Amsterdam, pp.50–72, 1978.

[3] U. Derigs, Solving non-bipartite matching problems via shortest path techniques, Annals of
Operations Res. 13, pp, 225–261, 1988.

[4] J. Edmonds, Paths, trees, and flowers, Canadian J. Math. 17, pp.449–467, 1965.

[5] J. Edmonds, Maximum matching and a polyhedron with 0,1-vertices, J. Res. Nat. Bur. Stan-
dards 69B, pp.125–130, 1965.

[6] R.M. Karp, E. Upfal and A. Wigderson, Constructing a perfect matching is in Random NC,
Combinatorica 6(1), pp.35–48,1986.

[7] E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart, and Win-
ston, NY, 1976.

[8] L. Lovász, A note on factor-critical graphs, Studia Scientiarum Mathematicarum Hungarica 7,
pp.279–280, 1972.

[9] L. Lovász, On determinants, matchings, and random algorithms, in Fundamentals of Compu-
tation Theory, L. Budach, ed., Akademie Verlag, Berlin, pp.565–574, 1979.

[10] L. Lovász and M.D. Plummer, Matching Theory, North-Holland Mathematics Studies 121,
North-Holland, NY, 1986.

[11] S. Micali and V.V. Vazirani, An O(
√

|V ||E|) algorithm for finding maximum matching in
general graphs, Proc.21st Annual IEEE Symp. on Foundations of Comp. Sci., pp.17–27, 1980.

[12] K. Mulmuley, U.V. Vazirani and V.V. Vazirani, Matching is as easy as matrix inversion,
Combinatorica 7(1), pp.105–113, 1987.

[13] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer, NY, 2003.

[14] V.V. Vazirani, A theory of alternating paths and blossoms for proving correctness of the
O(

√
V E) general graph matching algorithm, Combinatorica 14, pp.71–109, 1994.

37

