Fooling Sets and Introduction to Non-deterministic Finite Automata

Lecture 6
Proving that a language is not regular

• Given a language, we saw how to prove it is regular (union, intersection, concatenation, complement, reversal…)

• How to prove it is not regular?
Proving that a language is not regular

• Pick your favorite language \(L \) (= let \(L \) be an arbitrary language)

• For any strings \(x, y \) (\(x, y \) not necessarily in \(L \)) we define the following equivalence:

\[
x \equiv_L y
\]

• Means for EVERY string \(z \in \Sigma^* \) we have

\[
xz \in L \text{ if and only if } yz \in L
\]
Proving that a language is not regular

• Conversely,

\[x \not\in L \quad y \]

• Means for SOME string \(z \in \Sigma^* \) we have

either \(xz \in L \) and \(yz \notin L \)

or \(xz \notin L \) and \(yz \in L \)

We say \(z \) distinguishes \(x \) from \(y \)

(take \(z \), glue it to \(x \) and \(y \) and see what belongs to \(L \))
Example

• Pick your favorite language

• e.g. \(L = \{ \text{strings with even zeroes and odd ones} \} \)

• Pick \(x = 0011 \) and \(y = 01 \). None of them in \(L \)!

• Can we find distinguishing suffix \(z \)?

\[
\begin{align*}
\text{z}=1: & & xz=00111 & \text{in } L \\
 & & yz=011 & \text{not in } L \\
\text{z}=0: & & xz=00110 & \text{not in } L \\
 & & yz=010 & \text{in } L \\
\text{z}=\varepsilon: & & xz=0011 & \text{not in } L \\
 & & yz=01 & \text{not in } L
\end{align*}
\]
Example

- $L = \{\text{strings with even zeroes and odd ones}\}$
- Pick $x = 0011$ and $y = 01$. None of them in L!
- Can we find distinguishing suffix z?

$z = 1$:
- $xz = 00111$ in L
- $yz = 011$ not in L

$z = 0$:
- $xz = 00110$ not in L
- $yz = 010$ in L

$z = \epsilon$:
- $xz = 0011$ not in L
- $yz = 01$ not in L

Bad choice for z!
Why do I care?

- I can learn something about the equivalence relation by looking at every DFA that accepts L.

- Assume that after the DFA reads x and y it ends up at the same state:

$$\delta^*(s, x) = \delta^*(s, y) \Rightarrow x \equiv_L y$$

Proof: For any z,

$$\delta^*(s, xz) = \delta^*(s, yz) \Rightarrow$$

$$\delta^*(s, xz) \in A \iff \delta^*(s, yz) \in A$$
Why do I care?

- This implication can be turned around:

\[
\begin{align*}
\text{In ANY DFA for } L \\
x \neq y &\Rightarrow \delta^*(s, x) \neq \delta^*(s, y) \\
\Rightarrow |Q| \geq 2
\end{align*}
\]

- For the example before, we found two strings not equivalent.
- Any DFA for the language has AT LEAST two distinct states!
- Kind of trivial, cause what DFA has only one state?
Why do I care?

• Pushing it further:

If we can find k strings x_1, \cdots, x_k such that

$$x_i \neq x_j \quad \forall i \neq j$$

Then, any DFA for L has at least k states

A way of formally proving how “complicated” a language is if it is regular
Our Example

- $L = \{ \text{strings with even zeroes and odd ones} \}$

\[
\begin{align*}
 x_1 &= 00 \\
 x_2 &= 01 \\
 x_3 &= 001 \\
 x_4 &= 000
\end{align*}
\]
Our Example

- \(L = \{ \text{strings with even zeroes and odd ones} \} \)

\[
\begin{align*}
x_1 &= 00 \\
x_2 &= 01 \\
x_3 &= 001 \\
x_4 &= 000
\end{align*}
\]

\(z = 01 \)

- \(x_1 z = 0001 \) not in \(L \)
- \(x_2 z = 00001 \) in \(L \)
Our Example

- \(L = \{ \text{strings with even zeroes and odd ones} \} \)

\[
\begin{align*}
&x_1 = 00 \\
&x_2 = 01 \\
&x_3 = 001 \\
&x_4 = 000
\end{align*}
\]

\(z = \, ? \)
Our Example

- $L = \{\text{strings with even zeroes and odd ones}\}$

- $x_1 = 00$
- $x_2 = 01$
- $x_3 = 001$
- $x_4 = 000$

$z = 1$
Our Example

- $L = \{\text{strings with even zeroes and odd ones}\}$

Any DFA for L has AT LEAST 4 states!

What is a DFA for L?

$x_1 = 00$
$x_2 = 01$
$x_3 = 001$
$x_4 = 000$
Our Example

- $L = \{\text{strings with even zeroes and odd ones}\}$

We proved that this (obvious) DFA is the minimal one!!!
Our Example

- $L = \{ \text{strings with even zeroes and odd ones} \}$

```
\begin{align*}
  x_1 &= 00 \\
  x_2 &= 01 \\
  x_3 &= 001 \\
  x_4 &= 000
\end{align*}
```

Fooling set.
Proving that a language is not regular

- Suppose I can find an infinite fooling set for L.
- Infinite set of strings $\{x_1, x_2, \ldots\}$ such that
 \[x_i \neq x_j \quad \forall i \neq j \]
- Then every DFA for L has at least infinite number of distinct states!
- L not regular!
Proving that a language is not regular

• Example: $L = \{0^n1^n \mid n \geq 0\} = \{\varepsilon, 01, 0011, \ldots\}$

• Claim: This is a fooling set: $F = \{0^n \mid n \geq 0\}$

Proof: Let x, y two arbitrary different strings in F.

Therefore $x \neq y$.
Proving that a language is not regular

• Example: \(L = \{0^n1^n \mid n \geq 0 \} = \{\varepsilon, 01, 0011, \ldots\} \)

• Claim: This is a fooling set: \(F = \{0^n \mid n \geq 0 \} \)

Proof: Let \(x, y \) two arbitrary different strings in \(F \).

\[
\begin{align*}
 x &= 0^i \text{ for some integer } i \\
 y &= 0^j \text{ for some different integer } j \\
 z &= 1^i
\end{align*}
\]

Therefore \(x \not= y \).
Proving that a language is not regular

• Example: \(L = \{0^n1^n \mid n \geq 0 \} = \{\varepsilon, 01, 0011, \ldots\} \)

• Claim: This is a fooling set: \(F = \{0^n \mid n \geq 0 \} \)

Proof: Let \(x, y \) two arbitrary different strings in \(F \).

\[
\begin{align*}
x &= 0^i \text{ for some integer } i \\
y &= 0^j \text{ for some different integer } j \\
z &= 1^i \\
xz &= 0^i 1^i \text{ in } L \\
yz &= 0^j 1^i \text{ not in } L
\end{align*}
\]

Therefore \(x \neq y \).
Proving that a language is not regular

To prove that L is not Regular:

- Find some infinite set F
- Prove for any two strings x and y in F there is a string z such that \(xz \text{ is in } L \text{ XOR } yz \text{ is in } L\).

How to come up with those fooling sets?

- Be clever :)

Think of what information you have to keep track of in a DFA for L.
What to keep track of?

- Example: \(L = \{0^n1^n\} = \{\varepsilon, 01, 0011, \ldots\} \)

- Is a string in \(L \)? What do I have to keep track of?

- I need to keep track of the number of zeroes.

- So, every number of zeroes is intuitively a different state (different equivalence class).

- Fooling set is a set of strings that exercises all possible values that I need to keep track in my head.

- Sometimes easier to narrow it down.
What to keep track of?

- Another Example: \(L = \{ w w^R \mid w \in \Sigma^* \} \) = even length palindromes

- What is a fooling set?

- I have to remember the whole string \(w \).

Attempt 1:

\[
F = \Sigma^* \\
x = 0000 \\
y = 00
\]

Attempt 2:

\[
F = \{?\}
\]
What to keep track of?

• Another Example: \(L = \{ w w^R \mid w \in \Sigma^* \} = \) even length palindromes

• What is a fooling set?

• I have to remember the whole string \(w \).

Attempt 1:

\[F = \Sigma^* \]
\[x = 0000 \]
\[y = 00 \]

Attempt 2:

\[F = 0^*1 \]
\[x = 0^i1 \]
\[y = 0^j1 \]
What to keep track of?

- Another Example: \(L = \{ w w^R \mid w \in \Sigma^* \} \) = even length palindromes

- What is a fooling set?

- I have to remember the whole string \(w \).

\[
F = 0^*1 \\
x = 0^11 \\
y = 0^11
\]

What \(z \) (exercise)?
What to keep track of?

- Another Example: $L = \{ww^R | w \in \Sigma^* \} = \text{even length palindromes}$

- What is a fooling set?

- I have to remember the whole string w.

 $F = 0^* 1$

 $x = 0^i 1$

 $y = 0^i 1$

 $z = 10^i$
What to keep track of?

• Another Example: \(L = \{ w \mid w = w^R \} = \text{all palindromes} \)

• What is a fooling set?

\[
F = 0^*1 \\
x = 0^i1 \\
y = 0^j1 \\
z = 10^i
\]
What to keep track of?

- Another Example: \(L = \{ w | w = w^R \} \) = all palindromes

- What is a fooling set: SAME!

 \[
 F = 0^*1 \\
 x = 0^11 \\
 y = 0^11 \\
 z = 10^i
 \]
What to keep track of?

- Another Example: \(L = \{ w | w = w^R \} = \) all palindromes over the alphabet \(\{ 0, 1, a, b, c, d, e, f \} \)

- What is a fooling set : SAME!

\[
F = 0^*1 \\
x = 0^i1 \\
y = 0^i1 \\
z = 10^i
\]
Proving that a language is not regular

Language is regular if and only if there is no infinite fooling set.
Nondeterminism

- Aka Magic.
Tracking Computation

A computation’s *configuration* evolves in each time-step on input 1010
Deterministic Computation

Deterministic: Each step is fully determined by the configuration of the previous step and the transition function. If you do it again, exactly the same thing will happen.
Nondeterminism

- Determinism: opposite of free will
- Nondeterminism: you suddenly have choices!
What can be non-deterministic about an FA?

- At a given state, on a given input, a set of “next-states”
- set could be empty, could be all states…
NFA : Formally

DFA : \(M = (\Sigma, Q, \delta, s, A) \)
\(\Sigma \): alphabet \(Q \): state space \(s \): start state \(A \): set of accepting states

\[\delta : Q \times \Sigma \rightarrow Q \]
\[\delta(q, a) = \text{a state} \]

NFA : \(N = (\Sigma, Q, \delta, s, A) \)

\[\delta : Q \times \Sigma \rightarrow 2^Q = P(Q) \]
\[\delta(q, a) = \{ \text{a set of states} \} \]
NFA

- Input = 1001

- $L = \{ \text{contains either 00 or 11} \}$
NFA

One of the states are accepting. There needs to be AT LEAST one accepting state.
Nondeterminism

- What is non determinism?
- Magic?
- Parallelism?
- Advice?
Nondeterminism

- What is non determinism?

- Suppose I wanted to prove to you that the string 1001 is in \(L = \{\text{contains either 00 or 11}\} \)

- We built a DFA with product last time.

- Proof is an accepting computation
NFA
Nondeterminism

• What is non determinism?

• Suppose I wanted to prove to you that the string 1001 is in L = \{contains either 00 or 11\}

• We built a DFA with product last time.

• Proof is an accepting computation: guide for the reader to how to follow the steps to a given conclusion.
Nondeterminism

• P vs. NP

• Are they the same?

• Easier to give the proof than come up with the proof! (?)
Nondeterminism

- For FSM, nondeterminism does not give you more expressive power!
- Any language that can be accepted by an NFAs can also be accepted by a DFA.
- It is more efficient, last example had 4 states but product construction had 8!
DFA for $L = \{w: w \text{ contains 00 or 11}\}$
NFA for $L = \{w : w \text{ contains 00 or 11}\}$
Design an NFA to recognize
\[L(M) = \{ w \mid w : 7\text{th character from the end is a } 1 \} \]

- Minimum DFA for this language would have \(2^7 \) states at least!
- need to remember the last 7 symbols.
NFA : Formally

- NFA has 5 parts, similar to a DFA: $N = (\Sigma, Q, \delta, s, A)$

 Σ: alphabet
 Q: state space
 s: start state
 F: set of accepting states

 $\delta: Q \times \Sigma \rightarrow P(Q)=2^Q$ transition function

- Define extended transition function:

 $\delta^*: Q \times \Sigma \rightarrow P(Q)=2^Q$

 $\delta^*(q, w) = \begin{cases}
 \text{\ldots\ldots\ if } w = \varepsilon \\
 \text{\ldots\ldots\ if } w = ax
 \end{cases}$
NFA : Formally

• NFA has 5 parts, similar to a DFA : $N = (\Sigma, Q, \delta, s, A)$

 Σ: alphabet
 Q: state space
 s: start state
 F: set of accepting states

 $\delta : Q \times \Sigma \rightarrow P(Q) = 2^Q$ transition function

• Define extended transition function:

 $\delta^* : Q \times \Sigma^* \rightarrow P(Q) = 2^Q$

 $\delta^*(q, w) =$

 \[
 \begin{align*}
 \{q\} & \quad \text{if } w = \varepsilon \\
 \bigcup_{p \in \delta(q,a)} \delta^*(p, x) & \quad \text{if } w = ax
 \end{align*}
 \]
NFA : When does it accept?

NFA accepts a string \(w \) if and only if

\[\delta^*(s, w) \cap A \neq \emptyset \]
Design an NFA to recognize
$L(M) = \{ w \mid w \text{ contains } 011 \text{ or } 110 \}$

For any input string, if it contains 011 or 110, then there is some computation path, that ends in the final state. And vice versa.
Design an NFA to recognize $L(M) = \{ w \mid w \text{ has the substring } 110 \text{ and ends in } 111 \}$

NFA : Examples

Design an NFA to recognize $L(M) = \{ w \mid w \text{ has the substring } 110 \text{ and ends in } 000 \}$