Finite State Machines

Lecture 4
Recall a Language is Regular if

- L is empty
- L contains a single string (could be the empty string)
- If L_1, L_2 are regular, then $L = L_1 \cup L_2$ is regular
- If L_1, L_2 are regular, then $L = L_1 \cdot L_2$ is regular
- If L is regular, then L^* is regular
Unbounded vs. Infinite

• Why do we need bullet 5?

• Why can’t we say that L^* is the infinite union of $\{\varepsilon\} \cup L \cup LL \cup LLL \cup \ldots$?

• Recursive definitions: at every branch of recursion we need to reach a base case in finite number of steps.

• We can invoke the union rule for any integer n number of steps

• infinity is not a number! I can only produce infinite sets by an operation like the *.
Complexity of Languages

• Central Question: How complex an algorithm is needed to compute (aka decide) a language? How much memory do I need?

• Today: a simple class of algorithms, that are fast and can be implemented using minimal hardware

 • Finite State Machines - Deterministic Finite Automata (FSM-DFA)

 • DFAs around us: Vending machines, Elevators, Digital watch logic, Calculators, Lexical analyzers (part of program compilation), ...
DFA (a.k.a. FSM)

- **Finite**: cannot use more memory to work on longer inputs
- Eg. Automatic door
DFA (a.k.a. FSM)

- **Finite**: cannot use more memory to work on longer inputs
- **Eg.** Automatic door
DFA (a.k.a. FSM)

- **Finite**: cannot use more memory to work on longer inputs
- **Eg. Automatic door**

<table>
<thead>
<tr>
<th>State</th>
<th>NEITHER</th>
<th>FRONT</th>
<th>REAR</th>
<th>BOTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLOSED</td>
<td>CLOSED</td>
<td>OPEN</td>
<td>CLOSED</td>
<td>CLOSED</td>
</tr>
<tr>
<td>OPEN</td>
<td>CLOSED</td>
<td>OPEN</td>
<td>OPEN</td>
<td>OPEN</td>
</tr>
</tbody>
</table>
Multiple of 5

```
MULTIPLEOF5(w[1..n]):
    rem ← 0
    for i ← 1 to n
        rem ← (2 \cdot rem + w[i]) mod 5
    if rem = 0
        return TRUE
    else
        return FALSE
```

- Could do long division, keep the intermediate results in an array but I don’t want to spend that much memory!

- Only one variable, rem, which represents the remainder of the part of the string I read so far when I divided by 5.
Multiple of 5

\[
\text{MULTIPLEOF5}(w[1..n]):
\begin{align*}
& \text{rem} \leftarrow 0 \\
& \text{for } i \leftarrow 1 \text{ to } n \\
& \quad \text{rem} \leftarrow (2 \cdot \text{rem} + w[i]) \mod 5 \\
& \text{if } \text{rem} = 0 \\
& \quad \text{return TRUE} \\
& \text{else} \\
& \quad \text{return FALSE}
\end{align*}
\]

- If I know the remainder for \(m \mod 5 \), and I read one more bit then line 3 tells me what the new remainder is (either \(m_0 \) or \(m_1 \)).

\(m_0 = 2m \) if I see “0” next
\(m_1 = 2m + 1 \) if I see “1” next
Multiple of 5

• Important feature of algorithm: Aside from variable i which counts the input bits and is necessary to read input, I only have one variable rem, which takes only a small (5) number of values.

• Streaming algorithm: Data flies by! Once $w[i]$ is gone, it is gone forever.

• Variable has a very small number of states, which I am able to specify at compile time. Very small amount of memory!
DFA (a.k.a. FSM)

- check if binary input is a multiple of 5.

store $x \mod 5$ here (initial value “null”). output bit indicates if it is 0.

next input symbol fed here

next-state look-up table

output bit for the input so far

calculate $x' \mod 5$ from $x \mod 5$ and input bit b, where $x' = 2x + b$
“Lookup” table

```
DoSOMETHINGCOOL(w[1..n]):
  q ← 0
  for i ← 1 to n
    q ← δ[q, w[i]]
  return A[q]
```

• q encapsulates the state of the algorithm

• Takes a small amount of values, which I know up front (e.g. q is a number between 1 and 4). Unbounded, not infinite!

• Depending on the character I read at position i, I change my state with function called delta (δ).

• I have a hardcoded array A and based on what the state is when I finish reading the string, I output the value of the array.
Instead of doing arithmetic at all, I could just **hard code** this lookup table into the code and simply do a lookup.

"Lookup" table

If we want to use our new DoSOMETHINGCOOL algorithm to implement MULTIPLEOF5, we simply give the arrays δ and A the following hard-coded values:

<table>
<thead>
<tr>
<th>q</th>
<th>$\delta[q,0]$</th>
<th>$\delta[q,1]$</th>
<th>$A[q]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>TRUE</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>FALSE</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>FALSE</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>FALSE</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

only one accepting state!
DFA (a.k.a. FSM)

- Algorithm or Machine? Algorithm is a Machine!!
- Once you program the machine, you don’t have to monitor it. It runs AUTOMATICALLY (Automaton...)
DFA (a.k.a. FSM)

• Equivalent view as a graph!
DFA (a.k.a. FSM)

• Example: check if input 01010101 is a multiple of 5

<table>
<thead>
<tr>
<th>input bit</th>
<th>current state</th>
<th>next state</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
DFA (a.k.a. FSM)

- check if input (MSB first) is a multiple of 5

<table>
<thead>
<tr>
<th>input bit</th>
<th>current state</th>
<th>next state</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

How to fully specify a DFA (syntax):

- FINITE Alphabet: Σ
- FINITE Set of States: Q
- Start state: $s \in Q$
- Set of Accepting states: $A \subseteq Q$
- Transition Function: $\delta : Q \times \Sigma \rightarrow Q$

$$\delta(q, a) = (2q + a) \mod 5$$
DFA (a.k.a. FSM)

• 3 equivalent ways to specify a FSM:

1)

<table>
<thead>
<tr>
<th>q</th>
<th>$\delta[q,0]$</th>
<th>$\delta[q,1]$</th>
<th>$A[q]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>TRUE</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>FALSE</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>FALSE</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>FALSE</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

2)

3)

$$\delta(q, a) = (2q + a) \mod 5$$

Together with a description of what are the states and what are the accepting states.
How to interpret these functions?

- $M = (\Sigma, Q, \delta, s, A)$
- $\delta^*(q,w)$ be the state M reaches starting from a state $q \in Q$, on input $w \in \Sigma^*$
- Recursive definition?
- What are the cases going to be?
Behavior of a DFA on an input

- $M = (\Sigma, Q, \delta, s, A)$
- $\delta^*(q,w)$ be the state M reaches starting from a state $q \in Q$, on input $w \in \Sigma^*$
- Formally,

- $\delta^*(q,w) = q$ if $w = \varepsilon$
- $\delta^*(q,w) = \delta^*(\delta(q,a), x)$ if $w = ax$
Behavior of a DFA on an input

- $\delta^*(0,01001) = ? \quad 4$
- $\delta^*(0,\varepsilon) = ? \quad 0$
- $\delta^*(0,010) = ? \quad 2$
- $\delta^*(2,01) = ? \quad 4$
Behavior of a DFA on an input

• $\delta^*(0,01001) = 4$

• Specify a walk in the graph
• Best represented as

\[
\begin{align*}
0 & \rightarrow 0 \\
0 & \rightarrow 1 \\
1 & \rightarrow 0 \\
2 & \rightarrow 0 \\
4 & \rightarrow 1 \\
4 & \rightarrow 4
\end{align*}
\]
Example: What strings does this machine accept?

Alphabet: $\Sigma = \{0,1\}$

Set of States: $Q = \{s,t\}$

Start state: $s \in Q$

Accepting state: $t \in Q$

Transition Function: $\delta : Q \times \Sigma \to Q$

$\delta(s,0) = s$, $\delta(s,1) = t$, $\delta(t,0) = t$, $\delta(t,1) = s$

Question: what is $L(M)$?

Answer: strings with odd number of ones!
Construction Exercise

• $L(M) = \{w \mid w \text{ ends in 01 or 10} \}$
• Is it regular??
• What should be in the memory?
• Last two bits seen.
 Possible values: $\epsilon, 0, 1, 00, 01, 10, 11$

$(0+1)^*01+(0+1)^*10$
Construction Exercise

- \(L(M) = \{ w \mid w \text{ ends in 01 or 10} \} \)
- Is it regular??
- What should be in the memory? Last two bits seen. Possible values: \(\varepsilon, (0+00), (1+11), 01, 10 \)
Construction Exercise

• $L(M) = \{ w \mid w \text{ contains 011 or 110 } \}$

• Brute force: Enough to remember last 3 symbols (8+4+2+1=15 states). Stay at accepting states if reached.

• “Clever” construction: Enough to remember valid prefixes. States: ε, 0, 1, 01, 11, OK (can forget everything else)

State: longest suffix of input that is a valid prefix of pattern