Languages and Regular expressions

Lecture 3
Alphabet, Strings, and Languages

• An **alphabet** $\Sigma = \{a, b, c\}$ is a finite set of **letters/symbols**.

• A string over an **alphabet** Σ is a finite sequence of symbols, e.g.
 - sequences cab, baa, and aaa are some strings over $\Sigma = \{a, b, c\}$
 - sequences $\varepsilon, 0, 1, 00$, and 01 are some strings over $\Sigma = \{0, 1\}$

• Σ^* is the **set of all strings** over Σ, e.g. $aabbbaa \in \Sigma^*$,

• Naturally, A **language** L is a collection/set of strings over some alphabet, i.e. $L \subseteq \Sigma^*$ e.g.,
 - $L_{\text{even}} = \{w \in \Sigma^* : w$ is of even length$\}$
 - $L_{\{a^n b^n\}} = \{w \in \Sigma^* : w$ is of the form $a^n b^n$ for $n \geq 0$}$
Sets of strings: Σ^n, Σ^*, and Σ^+

- Σ^n is the set of all strings over Σ of length exactly n. Defined inductively as:
 - $\Sigma^0 = \{ \varepsilon \}$
 - $\Sigma^n = \Sigma \Sigma^{n-1}$ if $n > 0$

- Σ^* is the set of all finite length strings:
 $$\Sigma^* = \bigcup_{n \geq 0} \Sigma^n$$

- Σ^+ is the set of all nonempty finite length strings:
 $$\Sigma^+ = \bigcup_{n \geq 1} \Sigma^n$$
\(\Sigma^n, \Sigma^*, \text{ and } \Sigma^+ \)

- \(|\Sigma^n| = |\Sigma|^n \)

- \(|\varnothing^n| = ? \)
 - \(\varnothing^0 = \{\varepsilon\} \)
 - \(\varnothing^n = \varnothing \varnothing^{n-1} = \varnothing \) if \(n > 0 \)

- \(|\varnothing^n| = 1 \) if \(n = 0 \)
 - \(|\varnothing^n| = 0 \) if \(n > 0 \)
\(\Sigma^*, \Sigma^+, \) and \(\Sigma^+ \)

- \(|\Sigma^*| = ? \)
 - Infinity. More precisely, \(\aleph_0 \)
- \(|\Sigma^*| = |\Sigma^+| = |N| = \aleph_0 \)

- How long is the longest string in \(\Sigma^* \)?
- How many infinitely long strings in \(\Sigma^* \)?
 - no longest string!
 - none
Languages
Language

• **Definition:** A formal language \(L \) is a set of strings over some finite alphabet \(\Sigma \) or, equivalently, an arbitrary subset of \(\Sigma^* \).

 Convention: Italic upper case letters denote languages.

• Examples of languages:
 - the empty set \(\emptyset \)
 - the set \(\{\varepsilon\} \),
 - the set \(\{0,1\}^* \) of all boolean finite length strings.
 - the set of all strings in \(\{0,1\}^* \) with an odd number of 1’s.
 - The set of all python programs that print “Hello World!”

• There are uncountably many languages (but each language has countably many strings)
Much ado about nothing

• ε is a string containing no symbols. It is not a language.

• $\{\varepsilon\}$ is a language containing one string: the empty string ε. It is not a string.

• \emptyset is the empty language. It contains no strings.
Building Languages

• Languages can be manipulated like any other set.

• Set operations:
 • Union: $L_1 \cup L_2$
 • Intersection, difference, symmetric difference
 • Complement: $L^\neg = \Sigma^* \setminus L = \{ x \in \Sigma^* \mid x \notin L \}$
 • (Specific to sets of strings) concatenation: $L_1 \cdot L_2 = \{ xy \mid x \in L_1, y \in L_2 \}$
Concatenation

• $L_1 \cdot L_2 = L_1L_2 = \{ xy \mid x \in L_1, y \in L_2 \}$ (we omit the bullet often)

 e.g. $L_1 = \{ \text{fido, rover, spot} \}, L_2 = \{ \text{fluffy, tabby} \}$

 then $L_1L_2 = \{ \text{fidofluffy, fidotabby, roverfluffy, ...} \}$

$L_1 = \{ a, aa \}, L_2 = \{ \varepsilon \}$

$L_1L_2 = L_1$

$L_1 \cdot L_2 = L_1L_2 = \{ \varepsilon \}$

$L_1L_2 = \emptyset$
Building Languages

• L^n inductively defined: $L^0 = \{ \varepsilon \}$, $L^n = LL^{n-1}$

Kleene Closure (star) L^*

Definition 1: $L^* = \bigcup_{n \geq 0} L^n$, the set of all strings obtained by concatenating a sequence of zero or more stings from L
Building Languages

- L^n inductively defined: $L^0 = \{ \varepsilon \}$, $L^n = LL^{n-1}$

 Kleene Closure (star) L^*

 Recursive Definition: L^* is the set of strings w such that either

 - $w = \varepsilon$ or

 - $w = xy$ for x in L and y in L^*
Building Languages

- $\{\varepsilon\}^* = ?$ \(\emptyset^* = ?\) \(\{\varepsilon\}^* = \emptyset^* = \{\varepsilon\}\)

- For any other L, the Kleene closure is infinite and contains arbitrarily long strings. It is the smaller superset of L that is closed under concatenation and contains the empty string.

- **Kleene Plus**

 \[L^+ = LL^* , \text{ set of all strings obtained by concatenating a sequence of at least one string from } L. \]

 —When is it equal to L^* ?
Regular Languages
Regular Languages

• The set of regular languages over some alphabet Σ is defined inductively by:
 • L is empty
 • L contains a single string (could be the empty string)
 • If L_1, L_2 are regular, then $L = L_1 \cup L_2$ is regular
 • If L_1, L_2 are regular, then $L = L_1 L_2$ is regular
 • If L is regular, then L^* is regular
Regular Languages Examples

- L = any finite set of strings. E.g., L = set of all strings of length at most 10
- L = the set of all strings of 0’s including the empty string

- Intuitively L is regular if it can be constructed from individual strings using any combination of union, concatenation and unbounded repetition.
Regular Languages Examples

• Infinite sets, but of strings with “regular” patterns
 • Σ^* (recall: L^* is regular if L is)
 • $\Sigma^+ = \Sigma\Sigma^*$
• All binary integers, starting with 1
 • $L = \{1\}\{0,1\}^*$
• All binary integers which are multiples of 37
 • later
Regular Expressions
Regular Expressions

• A compact notation to describe regular languages
• Omit braces around one-string sets, use + to denote union and juxtapose subexpressions to represent concatenation (without the dot, like we have been doing).
• Useful in
 • text search (editors, Unix/grep)
 • compilers: lexical analysis
Regular Expressions

• In arithmetic, we can use operations \times, $+$ to build up expressions such as $(5 + 3) \times 4$
• Similarly, we can use regular operations to build up expressions describing languages, which are called regular expressions.
• E.g $(0 \cup 1)0^*$
• Value of arithmetic expression above is 32.
• Value of a regular expression is a language (which one?)
Inductive Definition
A regular expression r over alphabet Σ is one of the following
($L(r)$ is the language it represents):

<table>
<thead>
<tr>
<th>Atomic expressions (Base cases)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>$L(\emptyset) = \emptyset$</td>
</tr>
<tr>
<td>w for $w \in \Sigma^*$</td>
<td>$L(w) = {w}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inductively defined expressions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$(r_1 + r_2)$</td>
<td>$L(r_1 + r_2) = L(r_1) \cup L(r_2)$</td>
</tr>
<tr>
<td>$(r_1 r_2)$</td>
<td>$L(r_1 r_2) = L(r_1) L(r_2)$</td>
</tr>
<tr>
<td>(r^*)</td>
<td>$L(r^) = L(r)^$</td>
</tr>
</tbody>
</table>

Any regular language has a regular expression and vice versa
Regular Expressions

• Can omit many parentheses
 • By following precedence rules:
 star (*) before concatenation (⋅), before union (+)
 (similar to arithmetic expressions)
 • e.g. $r^*s + t \equiv ((r^*) s) + t$
 • 10* is shorthand for $\{1\} \cdot \{0\}* $ and NOT $\{10\}*$
 • By associativity: $(r+s)+t \equiv r+s+t$, $(rs)t \equiv rst$
 • More short-hand notation
 • e.g., $r^+ \equiv rr^*$ (note: + is in superscript)
Regular Expressions: Examples

• $(0+1)^*$
 • All binary strings

• $((0+1)(0+1))^*$
 • All binary strings of even length

• $(0+1)^*001(0+1)^*$
 • All binary strings containing the substring 001

• $0^* + (0^*10^*10^*10^*)^*$
 • All binary strings with #1s $\equiv 0 \mod 3$

• $(01+1)^*(0+\varepsilon)$
 • All binary strings without two consecutive 0s
Exercise: create regular expressions

• All binary strings with either the pattern 001 or the pattern 100 occurring somewhere

 one answer: \((0+1)^*001(0+1)^* + (0+1)^*100(0+1)^*\)

• All binary strings with an even number of 1s

 one answer: \(0^*(10^*10^*)^*\)
Regular Expression Identities

• \(r^*r^* = r^* \)
• \((r^*)^* = r^* \)
• \(rr^* = r^*r \)
• \((rs)^*r = r(sr)^* \)
• \((r+s)^* = (r^*s^*)^* = (r^* + s^*)^* = (r+s^*)^* = \ldots \)
Equivalence

• Two regular expressions are equivalent if they describe the same language. eg.
 • $(0+1)^* = (1+0)^*$ (why?)

• Almost every regular language can be represented by infinitely many distinct but equivalent regular expressions
 • $(L \emptyset)^* L \varepsilon + \emptyset$ = ?
Regular Expression Trees

• Useful to think of a regular expression as a tree. Nice visualization of the recursive nature of regular expressions.

• Formally, a regular expression tree is one of the following:

 • a leaf node labeled \emptyset
 • a leaf node labeled with a string
 • a node labeled $+$ with two children, each of which is the root of a regular expression tree
 • a node labeled \cdot with two children, each of which is the root of a regular expression tree
 • a node labeled $*$ with one child, which is the root of a regular expression tree
A regular expression tree for \(0 + 0^*1(10^*1 + 01^*0)^*10^*\)
Not all languages are regular!
Are there Non-Regular Languages?

• Every regular expression over \{0,1\} is itself a string over the 8-symbol alphabet \{0,1,+,*,(,),\varepsilon, \emptyset\}.

• Interpret those symbols as digits 1 through 8. Every regular expression is a base-9 representation of a unique integer.

• Countably infinite!

• We saw (first few slides) there are uncountably many languages over \{0,1\}.

• In fact, the set of all regular expressions over the \{0,1\} alphabet is a non-regular language over the alphabet \{0,1,+,*,(,),\varepsilon, \emptyset\}!!