Computational Complexity. Lecture 9
 Space complexity.

Alexandra Kolla

Today

- Space Complexity, L,NL
- Configuration Graphs
- Log- Space Reductions
- NL Completeness, STCONN
- Savitch's theorem
- SL

Turing machines, briefly

- (3-tape) Turing machine M described by tuple ($\Gamma, \mathrm{Q}, \delta)$, where
- Γ is "alphabet" . Contains start and blank symbol, 0,1, among others (constant size).
- Q is set of states, including designated starting state and halt state (constant size).
- Transition function $\delta: Q \times \Gamma^{3} \rightarrow Q \times \Gamma^{2} \times\{L, S, R\}^{3}$ describing the rules M uses to move.

Turing machines, briefly

- (3-tape) NON-DETERMINISTIC Turing machine M described by tuple $(\Gamma, Q, \delta 0, \delta 1)$, where
- Γ is "alphabet" . Contains start and blank symbol, 0,1,among others (constant size).
- Q is set of states, including designated starting state and halt state (constant size).
- Two transition functions $\delta 0, \delta 1: Q \times \Gamma^{3} \rightarrow Q \times \Gamma^{2} \times$ $\{L, S, R\}^{3}$. At every step, TM makes nondeterministic choice which one to

Space bounded turing machines

- Space-bounded turing machines used to study memory requirements of computational tasks.
- Definition. Let $s: \mathbb{N} \rightarrow \mathbb{N}$ and $L \subseteq\{0,1\}^{*}$. We say that L $\in \operatorname{SPACE}(\mathrm{s}(\mathrm{n})$) if there is a constant c and a TM M deciding L s.t. at most c•s(n) locations on M's work tapes (excluding the input tape) are ever visited by M's head during its computation on every input of length n .
- We will assume a single work tape and no output tape for simplicity.
- Similarly for NSPACE(s(n)), TM can only use c•s(n) nonblank tape locations, regardless of its nondeterministic choices

Space bounded turing machines

- Read-only "input" tape.
- Read/write "work" or "memory" tape.
- We say that machine on input x, uses space s if it only uses the first $s(|x|)$ cells of the work tape.
- Makes sense to considerTM that use less memory than length of input, need at least $\log n$

Space complexity

- $\operatorname{DTIME}(\mathrm{s}(\mathrm{n})) \subseteq$ SPACE(s(n)) clearly.
- SPACE(s(n)) could run for as long as $2^{\Omega(s(n))}$ steps, can reuse space (i.e. count from 1 to $2^{s(n)-1}$ by maintaining counter of size $s(n)$).
- Next theorem shows this is tight, and it is the only relationship we know between the power of space-bounded and timebounded computation.

Space vs. time complexity

Theorem 1. If a machine always halts, and uses s(.) space, with $s(n) \geq \log n$, then it runs in time $2^{O(s(n))}$.

Configuration graphs

- Configuration of a TM M consists of contents of all non-blank entries of M's work tape, along with its state and head position on input tape, at a particular point in its execution.
- For every space $s(n)$, TM M and input x, the configuration graph of M on input x, denoted $G_{M, x}$ is a directed graph whose nodes correspond to all possible configurations of $\mathrm{M}(\mathrm{x})$.

Configuration graphs

- $G_{M, x}$ has directed edge from config. C to config C' if C' can be reached from C in one step, according to M's transition function.
- If M deterministic, then graph has outdegree one.
- If M non-deterministic, then graph has outdegree two.
- Can assume w.l.o.g. only one accept configuration Caccept, on which M halts and outputs 1.

Configuration graphs

- M accepts input x iff there is directed path in $G_{M, x}$ from Cstart to Caccept

Configuration graphs

- Lemma. Every vertex in $G_{M, x}$ can be described by using $\mathrm{c} \cdot \mathrm{s}(\mathrm{n})$ bits and, in partricular, $G_{M, x}$ has at most $2^{c s(n)}$ nodes.

Space vs. time complexity, II

Theorem 2. If DTM or NDTM halts, then $\operatorname{DTIME}(\mathrm{s}(\mathrm{n})) \subseteq \operatorname{SPACE}(\mathrm{s}(\mathrm{n})) \subseteq \mathrm{NSPACE}(\mathrm{s}(\mathrm{n}))$ $\subseteq \operatorname{DTIME}\left(2^{O(s(n))}\right)$

Some space complexity classes

- PSPACE $=\mathrm{U}_{\mathrm{c}>0} \operatorname{SPACE}\left(n^{c}\right)$
- NPSPACE $=U_{c>0} \operatorname{NSPACE}\left(n^{c}\right)$
- L=SPACE(log n)
- NL= NSPACE(log $n)$
- Is NL the space analog of NP? (NL= set of decision problems with solutions that can be verified in log space?)
- Corollary. NL؟P

Reductions in NL

- Would like to introduce notion of completeness in NL, analogous to the completeness we know for NP.
- For meaningful such notion, we cannot use poly-time reductions (otherwise every NL problem having at least a YES and a NO instance would be complete).
- Need weaker reductions.

Reductions in NL

- Definition (log-space reductions). Let A and B be decision problems. We say that A is \log space reducible to $\mathrm{B}, A \leq_{\log } B$, if there is a function f computable in log space such that $x \in A$ iff $f(x) \in B$ and $B \in L$.

Reductions in NL

- Theorem. If $\mathrm{B} \in \mathrm{L}$ and $A \leq_{\log } B$, then $\mathrm{A} \in$ L

Reductions in NL

Reductions in NL

- Theorem. If $A \leq_{l o g} B, \mathrm{~B} \leq_{l o g} C$, then $A \leq_{l o g} C$.

NL Completeness

- Definition. A is NL-hard if for all $B \in N L$, $\mathrm{B} \leq_{\log } A$. A is NL -complete is $\mathrm{A} \in \mathrm{NL}$ and A is NL-hard.
- STCONN (s,t-connectivity). Given in input a directed graph $G(V, E)$ and two vertices $s, t \in V$, we want to determine if there is a directed path from s to t.

NL Completeness

- Theorem. STCONN is NL-complete.

Savitch's theorem

- What kind of tradeoffs are there between memory and time?
- E.g STCONN can be solved deterministically in linear time and linear space, using depth-first search.
- Can searching be done deterministically in less than linear space?

Savitch's theorem

- Theorem. If A is a problem that can be solved non-deterministically in space $s(n) \geq \operatorname{logn}$, then in can be solved deterministically in space $O\left(s^{2}(n)\right)$.
- Corollary. STCONN can be solved deterministically in $O\left(\log ^{2} n\right)$ space.

Savitch's theorem

Corollary. STCONN can be solved deterministically in $O\left(\log ^{2} n\right)$ space.

- Exponentially better space than deapthfirst search, no longer poly time.
- Time required by Savitch's algorithm is super-poly.
- No known algorithm simultaneously achieves poly time and polylog space.

ST-UCONN and symmetric nondeterministic machines

- Undirected s,t, connectivity ST-UCONN: we are given undirected graph and the question is if there is path from s to t.
- Not known to be complete for NL, probably not, but complete for class SL (symmetric, non-deterministic TM with O(log n) space).
- Non-deterministic TM is symmetric if whenever transition s-s' possible, so is $s^{\prime}-s$.
- Same proof of completeness, since transition graph now is undirected.

An incomplete picture of what we know

- $L \subseteq S L \subseteq N L \subseteq P \subseteq N P \subseteq P S P A C E \subseteq E X P$
- We (should) know that P ¢ EXP and we will see $L \subsetneq$ PSPACE so some inclusions not strict. Maybe all?
- Reingold 'o4 showed in a breakthrough result that $\mathrm{L}=\mathrm{SL}$.

