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Today

» Space Complexity, L,NL

» Configuration Graphs

» Log- Space Reductions

* NL Completeness, STCONN
* Savitch’s theorem

o SL



Turing machines, briefly
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* (3-tape) Turing machine M described by tuple
(I',Q,0), where
o I"is “"alphabet” . Contains start and blank symbol,
0,1,among others (constant size).

> Qs set of states, including designated starting state
and halt state (constant size).

> Transition function 8:QxTI'3 —» QXI'?*x{L, S, R}’
describing the rules M uses to move.



Turing machines, briefly
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* (3-tape) NON-DETERMINISTIC Turing machine
M described by tuple (I',Q,00,01), where

o I"is “"alphabet” . Contains start and blank symbol,
0,1,among others (constant size).

> Qs set of states, including designated starting state
and halt state (constant size).

> Two transition functions 80, 81 :Q XT3 - QXTI X
{L,S,R}3. At every step, TM makes non-
deterministic choice which one to



Space bounded turing machines

» Space-bounded turing machines used to study
memory requirements of computational tasks.

* Definition. Lets:N - Nand L € {0,1}*. We say that
Le SPACE(s(n)) if there is a constantcandaTM M
deciding L s.t. at most c's(n) locations on M'’s work
tapes (excluding the input tape) are ever visited b
M'’s head during its computation on every input o
length n.

» We will assume a single work tape and no output
tape for simplicity.

 Similarly for NSPACE(s(n)), TM can only use cs(n)
nonblank tape locations, regardless of its
nondeterministic choices



Space bounded turlng machines
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» Read-only “input” tape.
» Read/write “work” or *memory” tape.
» We say that machine on input x, uses space

s if it only uses the first s(|x|) cells of the
work tape.

» Makes sense to consider TM that use less
memory than length of input, need at least
log n



Space complexity

* DTIME(s(n)) €SPACE(s(n)) clearly.

» SPACE(s(n)) could run for as long as
28(s(n) steps, can reuse space (i.e. count
from 1 to 25(™~1 by maintaining counter
of size s(n)).

* Next theorem shows this is tight, and it is
the only relationship we know between
the power of space-bounded and time-
bounded computation.



Space vs. time complexity

Theorem 1. If a machine always halts, and
uses s(.) space, with s(n)=log n, then it runs
in time 20Gs(M),



Configuration graphs

» Configuration of aTM M consists of
contents of all non-blank entries of M’s

work tape, along with its state and head

nosition on input tape, at a particular
point in its execution.

» For every space s(n), TM M and input x,

the configuration graph of M on input x,
denoted Gy, , is a directed graph whose
nodes correspond to all possible
configurations of M(x).




Configuration graphs

* Gy x has directed edge from config. Cto
config C'if C' can be reached from Cin one
step, according to M’s transition function.

* If M deterministic, then graph has out-
degree one.

* If M non-deterministic, then graph has out-
degree two.

» Can assume w.l.0.g. only one accept

configuration Caccept, on which M halts and
outputs 1.



Configuration graphs

* M accepts input x iff there is directed
path in Gy, from Cstart to Caccept

=



Configuration graphs

 Lemma. Every vertexin Gy, can be
described by using c's(n) bits and, in
partricular, Gy , has at most 2¢5(™)
nodes.



Space vs. time complexity, |l

Theorem 2. If DTM or NDTM halts, then
DTIME(s(n)) €ESPACE(s(n)) ENSPACE(s(n))
CDTIME(29(s(m))



Some space complexity classes

o PSPACE= Uc>0SPACE(n®)

» NPSPACE= Uc>0NSPACE(n®)
* L=SPACE(log n)

* NL=NSPACE(log n)

* Is NL the space analog of NP? (NL= set of
decision problems with solutions that can
be verified in log space?)

e Corollary. NLCP



Reductions in NL

» Would like to introduce notion of
completeness in NL, analogous to the
completeness we know for NP.

» For meaningful such notion, we cannot
use poly-time reductions (otherwise
every NL problem having at least aYES
and a NO instance would be complete).

e Need weaker reductions.



Reductions in NL

* Definition (log-space reductions). Let A
and B be decision problems. We say that
Ais log space reducibleto B, A <, B, if
there is a function f computable in log
space such thatxe Aiff f(x) e Band B € L.



Reductions in NL

* Theorem.IfBelLand A <., B, thenA €
L



Reductions in NL
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Reductions in NL

* Theorem. It A <;,, B, B<)44 C, then
A <54 C.



NL Completeness

» Definition. A is NL-hard if for all BE NL,
B<;o4 A.Ais NL-complete is A € NL and

A is NL-hard.

e STCONN (s,t-connectivity). Given in
input a directed graph G(V,E) and two
vertices s,t € V, we want to determine if
there is a directed path from s to t.



NL Completeness

* Theorem. STCONN is NL-complete.



Savitch’'s theorem

e What kind of tradeoffs are there between
memory and time?

* E.g STCONN can be solved

deterministically in linear time and linear
space, using depth-first search.

» Can searching be done deterministically
in less than linear space?



Savitch’'s theorem

» Theorem. If A is a problem that can be
solved non-deterministically in space
s(n)=logn, then in can be solved
deterministically in space 0(s%(n)) .

» Corollary. STCONN can be solved
deterministically in 0(log“n) space.



Savitch’'s theorem

Corollary. STCONN can be solved
deterministically in 0(log“n) space.

» Exponentially better space than deapth-
first search, no longer poly time.

» Time required by Savitch’s algorithm is
super-poly.

* No known algorithm simultaneously
achieves poly time and polylog space.



ST-UCONN and symmetric non-

deterministic machines

» Undirected s,t, connectivity ST-UCONN: we
are given undirected graph and the question
is if there is path from s to t.

» Not known to be complete for NL, probably
not, but complete for class SL (symmetric,
non-deterministic TM with O(log n) space).

* Non-deterministic TM is symmetric if
whenever transition s-s’ possible, so is s'-s.

» Same proof of completeness, since
transition graph now is undirected.



An incomplete picture of what we
know

e LESLE NLEPCS NP <€ PSPACE € EXP

» We (should) know that P SEXP and we
will see L € PSPACE so some inclusions
not strict. Maybe all?

» Reingold ‘o4 showed in a breakthrough
result that L=SL.



