Computational Complexity. Lecture 5

Randomized Computation

Alexandra Kolla
Today

- Probabilistic complexity classes
- Relationship between classes
- BPP in Σ_2
Probabilistic complexity classes

- Algorithm A gets as input sequence of random bits r and “real” input x of the problem.
- Output is the correct answer for input x with some probability.
- **Definition.** A is called polynomial time probabilistic algorithm if the size of the random sequence |r| is poly in |x| and A runs in time polynomial in |x|.
Probabilistic complexity classes

- **Definition (BPP).** Decision problem L belongs to the class BPP if there is a polynomial time algorithm A and a polynomial $p()$ such that:
 - For every $x \in L$, $\Pr_{r \in \{0,1\}^{p(|x|)}}[A(r, x) \text{ accepts}] \geq \frac{2}{3}$
 - For every $x \notin L$, $\Pr_{r \in \{0,1\}^{p(|x|)}}[A(r, x) \text{ accepts}] \leq \frac{1}{3}$
We can also define the class P similarly:

Definition (P). Decision problem L belongs to the class P if there is a polynomial time algorithm A and a polynomial p() such that:

- For every $x \in L$, $\Pr_{r \in \{0,1\}^p(|x|)} [A(r, x) \text{ accepts}] = 1$
- For every $x \notin L$, $\Pr_{r \in \{0,1\}^p(|x|)} [A(r, x) \text{ accepts}] = 0$
Probabilistic complexity classes

Definition (RP). Decision problem L belongs to the class RP if there is a polynomial time algorithm A and a polynomial $p()$ such that:

- For every $x \in L$, $\Pr_{r \in \{0,1\}^p(|x|)} [A(r, x) \text{ accepts}] \geq \frac{1}{2}$
- For every $x \notin L$, $\Pr_{r \in \{0,1\}^p(|x|)} [A(r, x) \text{ accepts}] = 0$
Definition (coRP). $\text{coRP} = \{L | \bar{L} \in R\}$

In other words, the error is in the other direction (will never output 0 if $x \in L$ but may output 1 if $x \notin L$.)
Probabilistic complexity classes

- We can also define the class P similarly:
- **Definition (ZPP).** Decision problem \(L \) belongs to the class ZPP if there is a polynomial time algorithm \(A \) whose output can be 0, 1 and a polynomial \(p() \) such that:
 - For every \(x \in L \), \(\Pr_{r \in \{0,1\}^p(|x|)} [A(r, x) =?] \leq \frac{1}{2} \)
 - \(\forall x \exists r \) such that \(A(x, r) \neq ? \), then \(A(x, r) = 1 \) iff \(x \in L \).
Relations between complexity classes

- **Theorem 1.** $\text{RP} \subseteq \text{NP}$

- **Theorem 2.** $\text{ZPP} \subseteq \text{RP}$
Relations between complexity classes

- Exercise. $ZPP = RP \cap \text{coRP}$
Relations between complexity classes

- **Theorem 3.** A language L is in the class ZPP if and only if L has an average polynomial time algorithm that always gives the right answer.
Relations between complexity classes

- Theorem 4. $\text{RP} \subseteq \text{BPP}$
We can also define the class RP with error probability exp. close to zero:

Definition (RP). Decision problem L belongs to the class RP if there is a polynomial time algorithm A and polynomial $p()$ such that for some fixed polynomial $q()$:

- For every $x \in \mathcal{L}$,
 $$L, \Pr_{r \in \{0,1\}^{p(|x|)}}[A(r, x) \text{ accepts}] \geq 1 - \left(\frac{1}{2}\right)^{q(|x|)}$$
- For every $x \notin \mathcal{L}$,
 $$L, \Pr_{r \in \{0,1\}^{p(|x|)}}[A(r, x) \text{ accepts}] = 0$$

Probability amplification
Theorem. (Chernoff bound)

Suppose X_1, \ldots, X_k are independent random variables with values in $\{0, 1\}$ and for every i, $\Pr[X_i = 1] = p$. Then

\[
\Pr \left[\frac{1}{k} \sum_{i=1}^{k} X_i - p > \epsilon \right] < e^{\left\{-\frac{\epsilon^2 k}{2p(1-p)}\right\}}
\]

\[
\Pr \left[\frac{1}{k} \sum_{i=1}^{k} X_i - p < -\epsilon \right] < e^{\left\{-\frac{\epsilon^2 k}{2p(1-p)}\right\}}
\]
Probability amplification

- Re-define BPP with exp. small error.

Definition (BPP). Decision problem L belongs to the class BPP if there is a polynomial time algorithm A and polynomial $p()$ such that for some fixed polynomial $q()$:

- For every $x \in L$, $\Pr_{r \in \{0,1\}^p(|x|)}[A(r, x) \text{ accepts}] \geq 1 - \left(\frac{1}{2}\right)^q(|x|)$

- For every $x \not\in L$, $\Pr_{r \in \{0,1\}^p(|x|)}[A(r, x) \text{ accepts}] \leq \left(\frac{1}{2}\right)^q(|x|)$
Biased coins

- Could an algorithm get more power if the coin is not fair?

- **Lemma 1.** A coin with $\Pr(\text{heads}) = p$ can be simulated in expected time $O(1)$ provided that the i-th bit or p is compute in $\text{poly}(i)$ time.

- **Lemma 2.** A coin with $\Pr(\text{heads}) = 1/2$ can be simulated by an algorithm that has access to a stream of p-biased coins in expected time $O(1/p(1-p))$. (ex)
Relations between probabilistic classes and circuit complexity

- **Theorem.** $\text{BPP} \subseteq \text{SIZE}(n^{O(1)})$
Other relations

- **Open.** \(\text{BPP} \subseteq \text{NP} \) (unlikely by previous lecture)
BPP $\subseteq \Sigma_2$

- **Theorem.** (Siepser-Gacs-Lautemann) $\text{BPP} \subseteq \Sigma_2$