Computational Complexity. Lecture 6 Polynomial Hierarchy

Alexandra Kolla

Today

- Definition of Polynomial Hierarchy
- Alternate characterization
- Some facts, and when does it collapse

The polynomial hierarchy

- Difference between NP and coNP is questions of the form "does there exist" (simple, efficient proofs) and "for all" (don't seem to have simple and efficient proofs).
- Formally, decision problem A is in NP iff there is poly-time procedure V (.,.) and polynomial bound p (.) such that

$$
x \in A \Leftrightarrow \exists y:|y| \leq p(|x|) \wedge V(x, y)=1
$$

- Decision problem A is inco NP iff there is polytime procedure V (.,.) and polynomial bound $p($. such that

$$
x \in A \Leftrightarrow \forall y:|y| \leq p(|x|) \wedge V(x, y)=1
$$

Stacking quantifiers

- Suppose you had a decision problem A which asked
$x \in A \Leftrightarrow \exists z$ s.t. $|z| \leq p(|x|) \forall y$ s.t. $|y| \leq p(|x|), V(x, z, y)$

Example: given Boolean formula f, over variables $x_{1}, x_{2}, \ldots, x_{n}$ is there formula f^{\prime} which is equivalent to f and is of size at most k ?

- Member of the second level of the polynomial hierarchy \sum_{2}

The polynomial hierarchy

- Starts with familiar classes at level $1: \sum_{1}=$ $N P$ and $\prod_{1}=c o N P$.
- For all i, it includes two classes \sum_{i} and \prod_{i} $\mathrm{A} \in \sum_{i} \Leftrightarrow \exists y_{1} \forall y_{2} \ldots Q y_{i} V_{A}\left(x, y_{1}, \ldots, y_{i}\right)$
$\mathrm{B} \in \prod_{i} \Leftrightarrow \forall y_{1} \exists y_{2} \ldots Q^{\prime} y_{i} V_{B}\left(x, y_{1}, \ldots, y_{i}\right)$

For clarity, I omitted the $p($.$) conditions but$ they are still there.

The polynomial hierarchy

- Easy to see that : $\prod_{k}=c o \sum_{k}$.
- For all $\mathrm{i}<\mathrm{k}, \prod_{i} \subseteq \sum_{k \prime} \sum_{i} \subseteq \sum_{k}, \sum_{i} \subseteq \prod_{k \prime}$ $\Pi_{i} \subseteq \prod_{k}(\mathrm{ex})$

An alternate characterization

- PH characterized in terms of "oracle machines"
- Oracle has certain power and can be consulted as many times as desired. Every consultation costs only one computational step at a time.
- Syntactically, let A be some decision problem and \mathcal{M} a class of TM. Then \mathcal{M}^{A} is the class of machines obtained from \mathcal{M} by allowing instances of A to be solved in one step.

An alternate characterization

- If C is a complexity class, then $\mathcal{M}^{\mathrm{C}}=$ $\cup_{A \in C} \mathcal{M}^{A}$.
- If L is complete for C and the machines in \mathcal{M} are powerful enough to compute poly-time computations, then $\mathcal{M}^{\mathrm{C}}=\mathcal{M}^{L}$.

An alternate characterization

- Theorem. $\sum_{2}=N P^{3 S A T}$

An alternate characterization

- Theorem. For every i>1, $\sum_{i}=N P^{\sum i-1}$ (ex)

Additional properties

Here are some facts about PH that we will not prove:
${ }^{\circ} \sum_{i}$ and \prod_{i} have complete problems for all i .

- A \sum_{i}-complete problem is not in $\prod_{j}, j<i$, unless $\sum_{i}=\Pi_{j}$.
- A \sum_{i}-complete problem is not in \sum_{j} j j i, unless $\sum_{i}=\sum_{j}$
- Suppose $\sum_{i}=\prod_{i}$ for some i. Then $\sum_{j}=\Pi_{j}=\sum_{i}=\prod_{i}$ for all $j \geq i$.
- Suppose that $\prod_{i}=\prod_{i+1}$ for some i. Then $\sum_{j}=\prod_{j}=\prod_{i}$ for all $j \geq i$.

Additional properties

Theorem. (Special case of (3) above)
Suppose NP=coNP. Then for every $i \geq 2$, $\sum_{i}=\mathrm{NP}$.

