Computational Complexity. Lecture 6

Polynomial Hierarchy

Alexandra Kolla

Today

- Definition of Polynomial Hierarchy
- Alternate characterization
- Some facts, and when does it collapse

The polynomial hierarchy

- Difference between NP and coNP is questions of the form "does there exist" (simple, efficient proofs) and "for all" (don't seem to have simple and efficient proofs).
- Formally, decision problem A is in NP iff there is poly-time procedure V(.,.) and polynomial bound p(.) such that

 $x \in A \Leftrightarrow \exists y : |y| \le p(|x|) \land V(x, y) = 1$

 Decision problem A is inco NP iff there is polytime procedure V(.,.) and polynomial bound p(.) such that

$$x \in A \Leftrightarrow \forall y : |y| \le p(|x|) \land V(x, y) = 1$$

Stacking quantifiers

• Suppose you had a decision problem A which asked $x \in A \Leftrightarrow \exists z \ s. t. |z| \le p(|x|) \forall y \ s. t. |y| \le p(|x|), V(x, z, y)$

Example: given Boolean formula f, over variables x₁,x₂,...,x_n is there formula f' which is equivalent to f and is of size at most k?

• Member of the second level of the polynomial hierarchy \sum_2

The polynomial hierarchy

- Starts with familiar classes at level 1: $\sum_1 = NP$ and $\prod_1 = \text{coNP}$.
- For all i, it includes two classes \sum_i and \prod_i $A \in \sum_i \Leftrightarrow \exists y_1 \forall y_2 \dots Qy_i V_A(x, y_1, \dots, y_i)$

 $\mathsf{B} \in \prod_i \Leftrightarrow \forall y_1 \exists y_2 \dots Q' y_i V_B(x, y_1, \dots, y_i)$

For clarity, I omitted the p(.) conditions but they are still there.

The polynomial hierarchy

- Easy to see that : $\prod_k = co\sum_k$.
- For all i<k, $\prod_i \subseteq \sum_k, \sum_i \subseteq \sum_k, \sum_i \subseteq \prod_k, \prod_i \subseteq \prod_k$

- PH characterized in terms of "oracle machines"
- Oracle has certain power and can be consulted as many times as desired. Every consultation costs only one computational step at a time.
- Syntactically, let A be some decision problem and *M* a class of TM. Then *M^A* is the class of machines obtained from *M* by allowing instances of A to be solved in one step.

- If **C** is a complexity class, then $\mathcal{M}^{\mathsf{C}} = \bigcup_{A \in \mathsf{C}} \mathcal{M}^{A}$.
- If L is complete for C and the machines in \mathcal{M} are powerful enough to compute poly-time computations, then $\mathcal{M}^{C} = \mathcal{M}^{L}$.

• Theorem. $\sum_2 = NP^{3SAT}$

• Theorem. For every i>1, $\sum_i = NP^{\sum_{i=1}}$ (ex)

Additional properties

Here are some facts about PH that we will not prove:

- \sum_i and \prod_i have complete problems for all i.
- A \sum_i -complete problem is not in \prod_j , j<i, unless $\sum_i = \prod_j$.
- A \sum_i -complete problem is not in \sum_j , j<i, unless $\sum_i = \sum_j$
- Suppose $\sum_{i} = \prod_{i}$ for some i. Then $\sum_{j} = \prod_{j} = \sum_{i} = \prod_{i}$ for all $j \ge i$.

• Suppose that $\prod_i = \prod_{i+1}$ for some i. Then $\sum_j = \prod_j = \prod_i$ for all $j \ge i$.

Additional properties

Theorem. (Special case of (3) above) Suppose NP=coNP. Then for every $i \ge 2$, $\sum_i = NP$.