Computational Complexity. Lecture 3

 Boolean Circuits

 Boolean Circuits}

Alexandra Kolla

Today

- Boolean circuits
- Poly size circuits can simulate poly computations
- Relations between complexity classes
- Karp-Lipton

Circuits

- Circuit C has n inputs, m outputs and is constructed with AND, OR, NOT gates.
- Each gate has in-degree 2 except the NOT gate which has in-degree 1
- Circuit C computes function $f_{C}:\{0,1\}^{n} \rightarrow$ $\{0,1\}^{m}$
- SIZE(C)=number of AND and OR gates (we don't count NOT gates)

Circuits

A circuit computing the boolean function $f_{C}\left(x_{1} x_{2} x_{3} x_{4}\right)=x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4}$

Circuits

- To be compatible with other complexity classes, need to extend the model to arbitrary input sizes:
- Definition 1. Language L is solved by a family of circuits $\left\{C_{1}, C_{2}, \ldots, C_{n}, \ldots\right\}$ if for every $\mathrm{n} \geq 1$ and for every x s.t. $|\mathrm{x}|=\mathrm{n}$

$$
\mathrm{x} \in \mathrm{~L} \Leftrightarrow f_{C_{n}}(x)=1
$$

- Definition 2. Language $L \in \operatorname{SIZE}(s(n))$ if L is solved by a family of circuits $\left\{C_{1}, C_{2}, \ldots\right.$, $\left.C_{n}, \ldots\right\}$ where C_{i} has at most s(i) gates.

Relation to other complexity
 classes

- Unlike other complexity classes where there are languages of arbitrarily high complexity, the size complexity of a problem is always at most exponential
- Theorem. For every language L,

$$
\mathrm{L} \in \operatorname{SIZE}\left(0\left(2^{n}\right)\right)
$$

Relation to other complexity classes

Relation to other complexity classes

- Exponential bound is nearly tight
- Theorem. There are languages L such that $\mathrm{L} \notin \operatorname{SIZE}\left(2^{o(n)}\right)$. In particular, for every $\mathrm{n} \geq 11$, there exists $f:\{0,1\}^{n} \rightarrow$ $\{0,1\}$ that cannot be computed by a circuit of size $2^{o(n)}$.

Relation to other complexity
 classes

- Efficient computations can be simulated by small circuits
- Theorem. If $L \in \operatorname{DTIME}(t(n))$, then $L \in$ $\operatorname{SIZE}\left(0\left(t^{2}(n)\right)\right)$

Relation to other complexity classes

tape position

Relation to other complexity classes

Relation to other complexity classes

- Efficient computations can be simulated by small circuits
- Theorem. If $L \in \operatorname{DTIME}(\mathrm{t}(\mathrm{n}))$, then $\mathrm{L} \in$ $\operatorname{SIZE}\left(0\left(t^{2}(n)\right)\right)$
- Corollary. $\mathrm{P} \subseteq \operatorname{SIZE}\left(n^{O(1)}\right)$
- However, $\mathrm{P} \neq \operatorname{SIZE}\left(n^{O(1)}\right)$. In fact, there are undecidable languages in $\operatorname{SIZE}(0(1))$ (ex)

Karp-Lipton-Sipser

- Theorem. If NP $\subseteq \operatorname{SIZE}\left(n^{O(1)}\right)$ then $\mathrm{PH}=\Sigma_{2}$

Karp-Lipton-Sipser

- Theorem. If NP $\subseteq \operatorname{SIZE}\left(n^{O(1)}\right)$ then $\mathrm{PH}=\Sigma_{2}$

