Computational Complexity. Lecture 3

Boolean Circuits

Alexandra Kolla

Today

- Boolean circuits
- Poly size circuits can simulate poly computations
- Relations between complexity classes
- Karp-Lipton

Circuits

- Circuit C has n inputs, m outputs and is constructed with AND, OR, NOT gates.
- Each gate has in-degree 2 except the NOT gate which has in-degree 1
- Circuit C computes function $f_C: \{0,1\}^n \rightarrow \{0,1\}^m$
- SIZE(C)=number of AND and OR gates (we don't count NOT gates)

Circuits

A circuit computing the boolean function $f_C(x_1x_2x_3x_4) = x_1 \oplus x_2 \oplus x_3 \oplus x_4$

Circuits

- To be compatible with other complexity classes, need to extend the model to arbitrary input sizes:
- Definition 1. Language L is solved by a family of circuits {C₁, C₂,..., C_n, ...} if for every n≥1 and for every x s.t. |x|=n

 $\mathbf{x} \in \mathbf{L} \Longleftrightarrow f_{C_n} (x) = 1$

Definition 2. Language L ∈SIZE(s(n)) if L is solved by a family of circuits {C₁, C₂,..., C_n, ...} where C_i has at most s(i) gates.

- Unlike other complexity classes where there are languages of arbitrarily high complexity, the size complexity of a problem is always at most exponential
- Theorem. For every language L, L \in SIZE(0(2ⁿ))

• Exponential bound is nearly tight

• **Theorem**. There are languages L such that $L \notin SIZE(2^{o(n)})$. In particular, for every $n \ge 11$, there exists $f : \{0,1\}^n \rightarrow \{0,1\}$ that cannot be computed by a circuit of size $2^{o(n)}$.

- Efficient computations can be simulated by small circuits
- **Theorem**. If $L \in DTIME(t(n))$, then $L \in SIZE(O(t^2(n)))$

tape position

- Efficient computations can be simulated by small circuits
- **Theorem**. If $L \in DTIME(t(n))$, then $L \in SIZE(O(t^2(n)))$
- Corollary. $P \subseteq SIZE(n^{O(1)})$
- However, $P \neq SIZE(n^{O(1)})$. In fact, there are undecidable languages in SIZE(O(1)) (ex)

Karp-Lipton-Sipser

• **Theorem**. If NP \subseteq SIZE $(n^{O(1)})$ then PH= Σ_2

Karp-Lipton-Sipser

• **Theorem**. If NP \subseteq SIZE $(n^{O(1)})$ then PH= Σ_2

