Computational Complexity. Lecture 18
 \#P and Approximate Counting.

Alexandra Kolla

Today

- Counting classes.
- Reductions and complete problems.
- Complexity of counting.
- Leftover Hash Lemma.

NP relations and counting

certificates

- R is an NP relation if there is a poly time algorithm $\mathrm{A}(.,$.$) and a polynomial \mathrm{p}$ s.t. $(\mathrm{x}, \mathrm{y}) \in \mathrm{R} \Leftrightarrow A(x, y)=1$ and $(\mathrm{x}, \mathrm{y}) \in$ $\mathrm{R} \Rightarrow|\mathrm{y}| \leq \mathrm{p}(|\mathrm{x}|)$.
- \#R is the problem that, given x, asks how many y satisfy $(\mathrm{x}, \mathrm{y}) \in \mathrm{R}$.

Counting classes

- Definition. \#P is the class of all problems of the form \#R, where R is an NPrelation.
- Unlike for decision problems there is no canonical way to define reductions for counting classes. There are two common definitions.

Reductions for counting classes

- Definition 1. We say there is a parsimonious reduction from \#A to \#B (written \#A $\leq_{\text {par }} \# B$) if there is a polynomial time transformation f such that for all $\mathrm{x},|\{y,(x, y) \in A\}|=$ $|\{z:(f(x), z) \in B\}|$

Reductions for counting classes

- Previous definition restrictive, we use the next one instead sometimes:
- Definition 2. \#A \leq \# B if there is a polynomial time algorithm for \#A given an oracle that solves \#B.

Complete problems

- \#CIRCUITSAT is the problem where given a circuit, we want to count the number of inputs that make the circuit output.
- Theorem 1. \#CIRCUITSAT is \#Pcomplete under parsimonious reductions.

Complete problems

- Theorem 2. \#3SAT is \#P-complete under parsimonious reductions.
- If a counting problem \#R is \#P- complete under parsimonious reductions, then the associated language LR is NP-complete.
- For the oracle definition this is not true. There are problems whose decision version is in P, that are \#P-complete (2SAT, counting perfect matchings in bipartite graph).

Complexity of counting problems

- Theorem 3. For every counting problem \#A in \#P, there is an algorithm C that on input x, computes with high probability a value v such that

$$
(1-\epsilon) \# A(x) \leq v \leq(1+\epsilon) \# A(x)
$$

In time polynomial in $|\mathrm{x}|$ and in $1 / \epsilon$, using an oracle for NP.

Complexity of counting problems

- The theorem says that \#P can be approximated in $B P P^{N P}$.
- Note that approximating \#3SAT is NPhard, thus to compute the value v we need at least the power of NP.
- Theorem says that the power of NP and randomization is sufficient.

Complexity of counting problems

- Another result :
- Theorem 4(Toda). For every $k, \Sigma_{k} \subseteq P^{\# P}$
- Implies that \#3SAT is Σ_{k}-hard for every k, unless the hierarchy collapses.
- Recall that BPP is in Σ_{2} hence approximating \#3SAT can be done in Σ_{3}.
- Therefore approximating \#3SAT cannot be equivalent to computing it, unless PH collapses.

Proof of Theorem 3

- Some observations that will make the proof easier.
- Enough to prove it for \#3SAT. If we have approximation algorithm for \#3SAT we can extend it to any \#A in \#P using the parsimonious reduction from \#A to \#3SAT.

Proof of Theorem 3

- Enough to give a polynomial time O(1) approximation for \#3SAT.
- That is, suppose we have algorithm C and constant c such that

$$
\frac{1}{c} \# 3 S A T(\phi) \leq C(\phi) \leq c \# 3 S A T(\phi)
$$

Then we can construct $\phi^{k}=\phi_{1} \wedge \cdots \wedge \phi_{k}$, where ϕ_{i} is a copy of ϕ using fresh variables.

Proof of Theorem 3

- For formula φ that has $0(1)$ sat. assignments, \#3SAT (φ) can be found in $P^{N P}$.
Iteratively, asking the oracle questions of the form: Are there k assignments satisfying the formula? (NP, since algorithm can guess k assignments and check them)

Proof of Theorem 3, simplified

- Theorem 3^{\prime}. There is an algorithm C that on input x, computes with high probability a value v such that, for some constant c=O(1):

$$
\frac{1}{\mathrm{c}} \# 3 \operatorname{SAT}(\varphi) \leq v \leq c \# 3 S A T(\varphi)
$$

In time polynomial in $|x|$, using an oracle for NP.

- We will show that in the rest of class.

Leftover Hash Lemma

- Like in Valiant-Vazirani, for a given formula ϕ we will pick hash function h and look at the number of assignments x that satisfy ϕ and $h(x)=0$.
- Leftover Hash Lemma. (Impagliazzo, Levin, Luby)
Let H be a family of pairwise independent hash functions $h:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$. Let
$S \subseteq\{0,1\}^{n},|S| \geq 4 \cdot \frac{2^{m}}{\epsilon^{2}}$. Then, $\quad \operatorname{Pr}_{h \in \mathrm{H}}[| |\{a \in$
$\left.S: h(a)=0\}\left|-\frac{|S|}{2^{m}}\right| \geq \frac{\epsilon|S|}{2^{m}}\right] \leq \frac{1}{4}$

