
Computational 
Complexity. Lecture 18

#P and Approximate
Counting.

Alexandra Kolla



Today

� Counting classes.
� Reductions and complete problems.
� Complexity of counting.
� Leftover Hash Lemma.



NP relations and counting 
certificates
� R is an NP relation if there is a poly time 

algorithm A(.,.) and a polynomial p s.t.
(x, y) ∈ R ⇔ ( ), * = 1 and (x, y) ∈
R ⇒ |y|≤p(|x|).

� #R is the problem that, given x, asks how 
many y satisfy (x, y) ∈ R.



Counting classes

� Definition. #P is the class of all problems 
of the form #R, where R is an NP-
relation.

� Unlike for decision problems there is no 
canonical way to define reductions for 
counting classes. There are two common 
definitions.



Reductions for counting classes

� Definition 1. We say there is a 
parsimonious reduction from #A to #B 
(written #A ≤$%& #') if there is a 
polynomial time transformation f such 
that for all x, (, *, ( ∈ , =
|{0: 2 * , 0 ∈ '}|



Reductions for counting classes

� Previous definition restrictive, we use the 
next one instead sometimes:

� Definition 2. #A ≤ #B if there is a 
polynomial time algorithm for #A given 
an oracle that solves #B.



Complete problems

� #CIRCUITSAT is the problem where 
given a circuit, we want to count the 
number of inputs that make the circuit 
output 1.

� Theorem 1. #CIRCUITSAT is #P-
complete under parsimonious 
reductions.



Complete problems

� Theorem 2. #3SAT  is #P-complete under 
parsimonious reductions.

� If a counting problem #R is #P- complete under 
parsimonious reductions, then the associated 
language LR is NP-complete.

� For the oracle definition this is not true. There are 
problems whose decision version is in P, that are 
#P-complete (2SAT,counting perfect matchings
in bipartite graph).



Complexity of counting problems

� Theorem 3. For every counting problem 
#A  in #P, there is an algorithm C that on 
input x, computes with high probability a 
value v such that 

1 − # #%(') ≤ * ≤ 1 + # #%(')
In time polynomial in |x| and in 1/ # , using 
an oracle for NP.



Complexity of counting problems

� The theorem says that #P can be 
approximated in !""#$.

� Note that approximating #3SAT is NP-
hard, thus to compute the value v we 
need at least the power of NP.

� Theorem says that the power of NP and 
randomization is sufficient.



Complexity of counting problems

� Another result :
� Theorem 4(Toda). For every k, Σ" ⊆ $#&

� Implies that #3SAT is Σ"-hard for every k, 
unless the hierarchy collapses.

� Recall that BPP is in Σ' hence 
approximating #3SAT can be done in Σ(.

� Therefore approximating #3SAT cannot be 
equivalent to computing it, unless PH 
collapses.



Proof of Theorem 3

� Some observations that will make the 
proof easier.

� Enough to prove it for #3SAT. If we have 
approximation algorithm for #3SAT we 
can extend it to any #A in #P using the 
parsimonious reduction from #A to 
#3SAT.



Proof of Theorem 3

� Enough to give a polynomial time O(1) 
approximation for #3SAT. 

� That is, suppose we have algorithm C and 
constant c such that 
1
" #3%&' ( ≤ * ( ≤ "#3%&'(()

Then we can construct (- = (/ ∧ ⋯∧ (-,
where (3 is a copy of ( using fresh 
variables.



Proof of Theorem 3

� For formula φ that	has	O(1)	sat.	
assignments,	#3SAT(φ)	can	be	found	in	
=>?.

Iteratively, asking the oracle questions of 
the form: Are there k assignments 
satisfying the formula? (NP, since 
algorithm can guess k assignments and 
check them)



Proof of  Theorem 3, simplified

� Theorem 3’. There is an algorithm C that 
on input x, computes with high 
probability a value v such that, for some 
constant c=O(1): 

!
" #3SAT()) ≤ , ≤ -#3./0())

In time polynomial in |x|, using an oracle for 
NP.

� We will show that in the rest of class.



Leftover Hash Lemma
� Like in Valiant-Vazirani, for a given formula 
!	we will pick hash function h and look at 
the number of assignments x that satisfy !
and h(x)=0.

� Leftover Hash Lemma. (Impagliazzo, 
Levin, Luby)

Let H be a family of pairwise independent 
hash functions ℎ: 0,1 ( → 0,1 *. Let 

S ⊆ 0,1 (, - ≥ 4 ⋅ 1
2

34 . Then, Pr
7∈9

:;|{> ∈
-: ℎ > = 0}| − B

12; ≥
3 B
12 C ≤

E
F


