Computational

Complexity. Lecture 18

#P and Approximate
Counting.

Alexandra Kolla

Today

» Counting classes.

» Reductions and complete problem:s.
» Complexity of counting.

* Leftover Hash Lemma.

NP relations and counting

certificates

» Risan NP relation if there is a poly time
algorithm A(.,.) and a polynomial p s.t.
x,y) ER e A(x,y) =1and (X,y) €
R = [yl=p(|x])

» #R is the problem that, given x, asks how
many y satisfy (x,y) € R.

Counting classes

» Definition. #P is the class of all problems
of the form #R, where R is an NP-
relation.

» Unlike for decision problems there is no
canonical way to define reductions for
counting classes. There are two common
definitions.

Reductions for counting classes

 Definition 1. We say there is a
parsimonious reduction from #A to #B

(written #A <, #B) if thereis a
polynomial time transformation f such
that forall x, |{y, (x,y) € A}| =

{z: (f (x),z) € B}

Reductions for counting classes

» Previous definition restrictive, we use the
next one instead sometimes:

 Definition 2. #A < #B if there is a
polynomial time algorithm for #A given
an oracle that solves #B.

Complete problems

o #CIRCUITSAT is the problem where
given a circuit, we want to count the
number of inputs that make the circuit
output 1.

» Theorem 1. #CIRCUITSAT is #P-
complete under parsimonious
reductions.

Complete problems

» Theorem 2. #3SAT is #P-complete under
parsimonious reductions.

* If a counting problem #R is #P- complete under
arsimonious reductions, then the associated
anguage LR is NP-complete.

» Forthe oracle definition this is not true. There are
problems whose decision version is in P, that are
#P-complete (2SAT,counting perfect matchings
in bipartite graph).

Complexity of counting problems

» Theorem 3. For every counting problem
#A in #P, there is an algorithm Cthat on
input x, computes with high probability a
value v such that

(1—-e)#A(x) < v <1+ e)#A(x)

In time polynomial in [x| and in 1/ €, using

an oracle for NP.

Complexity of counting problems

» The theorem says that #P can be
approximated in BPPNF,

» Note that approximating #3SAT is NP-
hard, thus to compute the value v we
need at least the power of NP.

» Theorem says that the power of NP and
randomization is sufficient.

Complexity of counting problems

* Another result:
» Theorem 4(Toda). For every k, I, © P*F

* Implies that #3SAT is X -hard for every k,
unless the hierarchy collapses.

* Recall that BPPisin Z, hence
approximating #3SAT can be done in 5.

» Therefore approximating #3SAT cannot be
equivalent to computing it, unless PH
collapses.

Proof of Theorem 3

e Some observations that will make the
proof easier.

» Enough to prove it for #3SAT. If we have
approximation algorithm for #3SAT we
can extend it to any #A in #P using the
parsimonious reduction from #A to
#3SAT.

Proof of Theorem 3

* Enough to give a polynomial time O(2)
approximation for #3SAT.

» That is, suppose we have algorithm Cand
constant ¢ such that

%#BSAT(gb) < C(¢p) < c#3SAT(¢)

Then we can construct ¢* = ¢, A - A ¢y,
where ¢; is a copy of ¢ using fresh
variables.

Proof of Theorem 3

» For formula ¢ that has O(1) sat.
assignments, #3SAT(¢) can be found in
pN®.

Iteratively, asking the oracle questions of
the form: Are there k assignments
satisfying the formula? (NP, since

algorithm can guess k assignments and
check them)

Proof of Theorem 3, simplified

» Theorem 3'. There is an algorithm C that
on input x, computes with high
probability a value v such that, for some
constant c=0(2):

~ #3SAT(¢) < v < c#3SAT (¢)

In time polynomial in |x|, using an oracle for
NP.

e We will show that in the rest of class.

Leftover Hash Lemma

e Like inValiant-Vazirani, for a given formula
¢ we will pick hash function h and look at
the number of assignments x that satisfy ¢
and h(x)=o.

 Leftover Hash Lemma. (Impagliazzo,
Levin, Luby)

Let H be a family of pairwise independent
hash functions h: {0,1}"* — {0,1}'". Let

n 27
Sc{0,1}"|S| = 4 - .T_’len, hl)EII:I[‘l{a €
S:h(a) =0} —=|=—| <

el

