Computational Complexity. Lecture 16

 Expanders and PRGs

 Expanders and PRGs}

Alexandra Kolla

Today

- The use of PRGs in randomized algorithms.
- Random walks on expanders and Impagliazzo-Zuckerman PRG.
- Quasi-random properties of expanders, expander mixing lemma.

Why Study PRGs?

- Pseudo-random number generators take a seed which is presumably random and generate a long string of random bits that are supposed to act random.
- Why would we want a PRG?
- Random bits are scarce (eg low-order bits of temperature of the processor in computer is random, but not too many such random bits). Randomized algorithms often need many random bits.
- Re-run an algorithm for debugging, convenient to use same set of random bits. Can only do that by re-running the PRG with the same seed, but not with truly random bits.

What Type of PRGs?

- Standard PRGs are terrible (e.g. rand in C). Often produce bits that behave much differently than truly random bits.
- One can use cryptography to produce such bits, but much slower

Repeating an Experiment

- Consider wanting to run the same randomized algorithm many times.
- Let A be the algorithm, which returns "yes"/"no" and is correct 99\% of the time (correctness function of the random bits)
- Boost accuracy by running A t times and taking majority vote
- Use truly random bits the first time we run A and then with the PRG we will see that every new time we only need 9 random bits.
- If we run t times, probability that majority answer is wrong is exponential in t .

The Random Walk Generator

- Let r be the number of bits out algorithm needs for each run: space of random bits is $\{0,1\}^{r}$
- Let $X \subseteq\{0,1\}^{r}$ be the settings of random bits on which algorithm gives wrong answer
- Let $\mathrm{Y}=\{0,1\}^{r} \backslash \mathrm{X}$ be the settings on which algorithm gives the correct answer

The Random Walk Generator:

 Expander Graphs- Our PRG will use a random walk on a dregular G with vertex set $\{0,1\}^{r}$, and degree $\mathrm{d}=$ constant.
- We want G to be an expander in the following sense: If A_{G} is G's adjacency matrix and $d=\alpha_{1}>\alpha_{2} \geq \cdots \geq \alpha_{n}$ its eigenvalues then we require that

$$
\frac{\left|\alpha_{i}\right|}{d} \leq \frac{1}{10}
$$

Such graphs exist with $\mathrm{d}=400$ (next lectures)

The Random Walk Generator

- For the first run of algorithm, we require r truly random bits. Treat those bits as vertex of expander G.
- For each successive run, we choose a random neighbor of the present vertex and feed the corresponding bits to our algorithm.
- I.e, choose random i between 1 and 400 and move to the i-th neighbor of present vertex. Need $\log (400)$ ~ 9 random bits.
- Need concise description, don't want to store the whole graph (e.g. see hypercube)

The Random Walk Generator

The Random Walk Generator

The Random Walk Generator

G

The Random Walk Generator

G

The Random Walk Generator

G

Formalizing the Problem

- Assume we will run the algorithm t+1 times. Start with truly random vertex u and take t random walk steps.
- Recall that X is the set of vertices on which the algorithm is not correct, we assume that $|X| \leq \frac{2^{r}}{100}$ (algorithm correct 99% of time)
- If at the end, we report the majority of the t+1 runs of algorithm, then we will return the correct answer as along as the random walk is inside X less than half the time.

The Random Walk Generator

We will show that

$$
\operatorname{Pr}[|S|>t / 2] \leq\left(\frac{2}{\sqrt{5}}\right)^{t+1}
$$

Formalizing the Problem

- Initial distribution is uniform (start with truly random string): $\boldsymbol{p}_{\mathbf{0}}=\mathbf{1} / n$
- Let χ_{X} and χ_{Y} the characteristic vectors of X and Y.
- Let $D_{X}=\operatorname{diag}(X)$ and $D_{Y}=\operatorname{diag}(Y)$
- Let $W=\frac{1}{d} A$ (not lazy) random walk matrix, with eigenvalues $\omega_{1}, \ldots, \omega_{n}$ such that $\omega_{i} \leq \frac{1}{10}$ by the expansion requirement.
- For $|X| \leq \frac{2^{r}}{100}$,
$\mathrm{S}=\left\{\mathrm{i}: v_{i} \in X\right\}$ (time steps that the walk is in X) we want to show $\operatorname{Pr}[|S|>t / 2] \leq\left(\frac{2}{\sqrt{5}}\right)^{t+1}$

Expander Graphs

- Generally, we defined expander graphs to be d-regular graphs whose adjacency matrix eigenvalues satisfy

$$
\begin{aligned}
& \qquad\left|\alpha_{i}\right| \leq \epsilon d \\
& \text { for } \mathrm{i}>1, \text { and some small } \epsilon .
\end{aligned}
$$

Quasi-Random Properties of Expander Graphs

- Expanders act like random graphs in many ways.
- We saw that with random walk on expander, we can boost the error probability like we could do with random walk on a random graph (or truly random stings, Chernoff bound)
- In fact, a random d-regular graph is expander w.h.p.

Quasi-Random Properties of

Expander Graphs

- All sets of vertices in expander graph act like random sets of vertices.
- To see that, consider creating a random set $S \subseteq V$ by including every vertex in S independently w.p. a.
- For every edge (u,v) the probability that each end point is in S is a. Probability that both end points are in S is a^{2}.
- So, we expect a^{2} fraction of the edges to go between vertices in S .
- We show that this is true for all sufficiently large sets in an expander.

Quasi-Random Properties of Expander Graphs: EML

- We show something stronger (expander mixing lemma), for two sets S and T.
- Include each vertex in S w.p. a and each vertex in T w.p. b. We allow vertices to belong to both S and T . We expect that for ab fraction of ordered pairs (u, v) we have u in S and v in T.

Expander Mixing Lemma

- For graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ define the ordered set of pairs

$$
\frac{1}{E(S, T)}=\{(u, v): u \in S, v \in T,(u, v) \in E\}
$$

- When S, T disjoint $\overrightarrow{|E(S, T)|}$ is the number of edges between S and T.
- $\overrightarrow{|E(S, S)|}$ counts every edge inside S twice.

Expander Mixing Lemma, simplified

- Theorem (Beigel, Margulis, Spielman'93, Alon, Chung '88)
Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ a d-regular graph with $\left|\alpha_{i}\right| \leq$
$\left(\epsilon-\frac{1}{n-1}\right) d$, for $\mathrm{i}>1$. Then, for every $\mathrm{S} \subseteq \mathrm{V}$,
$T \subseteq V$ with $|S|=a n,|T|=b n$

$$
\begin{gathered}
\left|\left|\overrightarrow{E(S, T) \mid}-d \frac{|S||T|}{n}\right| \leq \epsilon d \sqrt{|S||T|} \Rightarrow\right. \\
||\overrightarrow{E(S, T) \mid}-d a b n| \leq \epsilon d n \sqrt{a b}
\end{gathered}
$$

