- Computational
Complexity. Lecture 16

Expanders and PRGs

Alexandra Kolla

Today

e The use of PRGs in randomized
algorithmes.

* Random walks on expanders and
Impagliazzo-Zuckerman PRG.

» Quasi-random properties of expanders,
expander mixing lemma.

Why Study PRGs?

* Pseudo-random number generators take a seed
which is presumably random and generate a long
string of random bits that are supposed to act
random.

* Why would we want a PRG?

> Random bits are scarce (eg low-order bits of temperature
of the processor in computer is random, but not too many
such random bits). Randomized algorithms often need
many random bits.

> Re-run an algorithm for debugging, convenient to use
same set of random bits. Can only do that by re-running
the PRG with the same seed, but not with truly random
bits.

What Type of PRGs?

» Standard PRGs are terrible (e.g. rand in
C). Often produce bits that behave much
differently than truly random bits.

» One can use cryptography to produce
such bits, but much slower

Repeating an Experiment

e Consider wanting to run the same
randomized algorithm many times.

 Let A be the algorithm, which returns
“ves”["no” and is correct 99% of the time
(correctness function of the random bits)

» Boost accuracy by running A t times and
taking majority vote
» Use truly random bits the first time we run A

and then with the PRG we will see that
every new time we only need g random bits.

* If we run t times, probability that majority
answer is wrong is exponential in t.

The Random Walk Generator

* Let r be the number of bits out algorithm
needs for each run: space of random bits
is {0,1}"

» Let X< {0,1}" be the settings of random
bits on which algorithm gives wrong
answer

» LetY ={0,1}" \X be the settings on which
algorithm gives the correct answer

The Random Walk Generator:
Expander Graphs

e Our PRG will use arandom walk on a d-
regular G with vertex set {0,1}", and degree
d = constant.

 We want G to be an expanderin the
following sense: If A is G's adjacency
matrixandd = a; > a, = - = a,, its
eigenvalues then we require that

04, 1
ol 1
d 10

Such graphs exist with d=400 (next lectures)

The Random Walk Generator

* For the first run of algorithm, we require r truly
random bits. Treat those bits as vertex of
expander G.

» For each successive run, we choose a random
neighbor of the present vertex and feed the
corresponding bits to our algorithm.

* |l.e, choose random i between 1 and 400 and
move to the i-th neighbor of present vertex.
Need log(400) ~ g random bits.

» Need concise description, don’t want to store the
whole graph (e.g. see hypercube)

The Random Walk Generator

G (%)) (S {0’1}7‘

oK

The Random Walk Generator

The Random Walk Generator

The Random Walk Generator

The Random Walk Generator

Formalizing the Problem

e Assume we will run the algorithm t+1 times.
Start with truly random vertex u and take t
random walk steps.

» Recall that X is the set of vertices on which
the algorithm is not correct, we assume that
2 . .
1X| < 100 (algorithm correct 99% of time)
o If at the end, we report the majority of the
t+1 runs of algorithm, then we will return
the correct answer as along as the random

walk is inside X less than half the time.

The Random Walk Generator

T={o,...,t} time steps
S={i: Vi (S X}

We will show that
Pr(lS| > t/2] < ()"

Formalizing the Problem

e Initial distribution is uniform (start with truly
random string): po = 1/n

e Let yy and yy the characteristic vectors of X and
Y.

o Let Dy = diag(X) and Dy = diag(Y)
o LetW = —A (not lazy) random walk matrlx with

elgenvalues W1,..., Wy Such that w; =75 by the
expansion reqmrement

o For|X| <—
100 ’

S={i:v; € X} (time steps that the walk is in X)

we want to show Pr[|S| > t/2] < (\%)Hl

Expander Graphs

» Generally, we defined expander graphs to
be d-reqular graphs whose adjacency
matrix eigenvalues satisfy

lo;| < ed
fori>1, and some small €.

Quasi-Random Properties of
Expander Graphs

» Expanders act like random graphs in
many ways.

» We saw that with random walk on
expander, we can boost the error
probability like we could do with random
walk on a random graph (or truly random
stings, Chernoff bound)

* In fact, a random d-reqular graphiis
expander w.h.p.

Quasi-Random Properties of
Expander Graphs

* All sets of vertices in expander graph act like
random sets of vertices.

» To see that, consider creating a random set
SC V by including every vertexin S
independently w.p. a.

* For every edge (u,v) the probability that
each end pointisinSis a. Probablllty that
both end points are inSisa?

* So, we expect a“ fraction ofthe edgesto go
between verticesinS.

* We show that this is true for all sufficiently
large sets in an expander.

Quasi-Random Properties of
Expander Graphs: EML

* We show something stronger (expander
mixing lemma), for two sets S andT.

* Include each vertexin S w.p. a and each
vertexinT w.p. b. We allow vertices to
belong to both S and T. We expect that
for ab fraction of ordered pairs (u,v) we
haveuinSandvinT.

Expander Mixing Lemma

» For graph G=(V,E) define the ordered set
of pairs
E(S,T) = {(u,v):ueS,veT, (uv) € E}

» When S, T disjoint |E(S,T) |> is the number
of edges between S andT.

o |E(S, S)>| counts every edge inside S
twice.

Expander Mixing Lemma,

simplified

» Theorem (Beigel, Margulis, Spielman’gs,

Alon, Chung '88)

Let G=(V,E) a d-reqgular graph with |a;| <

(e nil)d, fori>a. T
T<V with |S|=an, |T

nen, for every SCV,

=bn

|S1IT]

IEES, D —d——| < ed/ISIIT| =
|E(S, T)| — dabn| < ednVab

