
Computational
Complexity. Lecture 16

Expanders and PRGs

Alexandra Kolla

Today

� The use of PRGs in randomized
algorithms.

� Random walks on expanders and
Impagliazzo-Zuckerman PRG.

� Quasi-random properties of expanders,
expander mixing lemma.

Why Study PRGs?
� Pseudo-random number generators take a seed

which is presumably random and generate a long
string of random bits that are supposed to act
random.

� Why would we want a PRG?

◦ Random bits are scarce (eg low-order bits of temperature
of the processor in computer is random, but not too many
such random bits). Randomized algorithms often need
many random bits.

◦ Re-run an algorithm for debugging, convenient to use
same set of random bits. Can only do that by re-running
the PRG with the same seed, but not with truly random
bits.

What Type of PRGs?

� Standard PRGs are terrible (e.g. rand in
C). Often produce bits that behave much
differently than truly random bits.

� One can use cryptography to produce
such bits, but much slower

Repeating an Experiment
� Consider wanting to run the same

randomized algorithm many times.
� Let A be the algorithm, which returns

“yes”/”no” and is correct 99% of the time
(correctness function of the random bits)

� Boost accuracy by running A t times and
taking majority vote

� Use truly random bits the first time we run A
and then with the PRG we will see that
every new time we only need 9 random bits.

� If we run t times, probability that majority
answer is wrong is exponential in t.

The Random Walk Generator

� Let r be the number of bits out algorithm
needs for each run: space of random bits
is {0,1}&

� Let X⊆ {0,1}& be the settings of random
bits on which algorithm gives wrong
answer

� Let Y ={0,1}&\X be the settings on which
algorithm gives the correct answer

The Random Walk Generator:
Expander Graphs
� Our PRG will use a random walk on a d-

regular G with vertex set {0,1}&, and degree
d = constant.

� We want G to be an expander in the
following sense: If '(is G’s adjacency
matrix and) = +, > +. ≥ ⋯ ≥ +1 its
eigenvalues then we require that

|34|
5 ≤ ,

,7

Such graphs exist with d=400 (next lectures)

The Random Walk Generator

� For the first run of algorithm, we require r truly
random bits. Treat those bits as vertex of
expander G.

� For each successive run, we choose a random
neighbor of the present vertex and feed the
corresponding bits to our algorithm.

� I.e, choose random i between 1 and 400 and
move to the i-th neighbor of present vertex.
Need log(400) ~ 9 random bits.

� Need concise description, don’t want to store the
whole graph (e.g. see hypercube)

The Random Walk Generator

G !" ∈ {0,1})
t=0

The Random Walk Generator

G
!" ∈ $(!&)

t=1

The Random Walk Generator

G

!" ∈ $(!&)

t=2

The Random Walk Generator

G

!" ∈ $(!&)

t=3

The Random Walk Generator

G

Formalizing the Problem

� Assume we will run the algorithm t+1 times.
Start with truly random vertex u and take t
random walk steps.

� Recall that X is the set of vertices on which
the algorithm is not correct, we assume that
|"| ≤ $%

&'' (algorithm correct 99% of time)
� If at the end, we report the majority of the

t+1 runs of algorithm, then we will return
the correct answer as along as the random
walk is inside X less than half the time.

The Random Walk Generator

G
!" !#

!$

!%
!&

We will show that
Pr	[+ > -/2] ≤ ($3)

&5#

T={0,…,t} time steps
S={i: !6 ∈ 8}

Formalizing the Problem

� Initial distribution is uniform (start with truly
random string): !" = $/&

� Let '(and ') the characteristic vectors of X and
Y.

� Let *(= +,-.(0) and *) = +,-.(2)
� Let 3 =

4

5
6 (not lazy) random walk matrix, with

eigenvalues 74,…, 79 such that 7: ≤
4

4<
by the

expansion requirement.

� For 0 ≤
=>

4<<
	 ,

S={i:@: ∈ 0}		(time	steps	that	the	walk	is	in	X)
				we	want to show Pr	[S > U/2] ≤ (

=

X
)YZ4

Expander Graphs

� Generally, we defined expander graphs to
be d-regular graphs whose adjacency
matrix eigenvalues satisfy

|"#| ≤ %&
for i>1, and some small %.

Quasi-Random Properties of
Expander Graphs
� Expanders act like random graphs in

many ways.
� We saw that with random walk on

expander, we can boost the error
probability like we could do with random
walk on a random graph (or truly random
stings, Chernoff bound)

� In fact, a random d-regular graph is
expander w.h.p.

Quasi-Random Properties of
Expander Graphs
� All sets of vertices in expander graph act like

random sets of vertices.
� To see that, consider creating a random set

S⊆ "	by including every vertex in S
independently w.p. $.

� For every edge (u,v) the probability that
each end point is in S is $. Probability that
both end points are in S is $%.

� So, we expect $% fraction of the edges to go
between vertices in S.

� We show that this is true for all sufficiently
large sets in an expander.

Quasi-Random Properties of
Expander Graphs: EML
� We show something stronger (expander

mixing lemma), for two sets S and T.
� Include each vertex in S w.p. a and each

vertex in T w.p. b. We allow vertices to
belong to both S and T. We expect that
for ab fraction of ordered pairs (u,v) we
have u in S and v in T.

Expander Mixing Lemma

� For graph G=(V,E) define the ordered set
of pairs
!(#, %) = {), * :) ∈ #, * ∈ %, (), *) ∈ !}

� When S, T disjoint |! #, % | is the number
of edges between S and T.

� |!(#, #)| counts every edge inside S
twice.

Expander Mixing Lemma,

simplified

� Theorem (Beigel, Margulis, Spielman’93,

Alon, Chung ’88)

Let G=(V,E) a d-regular graph with |"#| ≤
(& − (

)*(),, for i>1. Then, for every S⊆V,	
T⊆V	with	|S|=an,	|T|=bn

||; <, = | − , < =
> | ≤ &, < = ⇒

||; <, = | − ,@A>| ≤ &,> @A

