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Today

� The use of PRGs in randomized 
algorithms.

� Random walks on expanders and 
Impagliazzo-Zuckerman PRG.

� Quasi-random properties of expanders, 
expander mixing lemma.



Why Study PRGs?
� Pseudo-random number generators take a seed 

which is presumably random and generate a long 
string of random bits that are supposed to act 
random.

� Why would we want a PRG?

◦ Random bits are scarce (eg low-order bits of temperature 
of the processor in computer is random, but not too many 
such random bits). Randomized algorithms often need 
many random bits.

◦ Re-run an algorithm for debugging, convenient to use 
same set of random bits. Can only do that by re-running 
the PRG with the same seed, but not with truly random 
bits.



What Type of PRGs?

� Standard PRGs are terrible (e.g. rand in 
C). Often produce bits that behave much 
differently than truly random bits.

� One can use cryptography to produce 
such bits, but much slower



Repeating an Experiment
� Consider wanting to run the same 

randomized algorithm many times. 
� Let A be the algorithm, which returns 

“yes”/”no” and is correct 99% of the time 
(correctness function of the random bits)

� Boost accuracy by running A t times and 
taking majority vote

� Use truly random bits the first time we run A 
and then with the PRG we will see that 
every new time we only need 9 random bits. 

� If we run t times, probability that majority 
answer is wrong is exponential in t.



The Random Walk Generator

� Let r be the number of bits out algorithm 
needs for each run: space of random bits 
is {0,1}&

� Let  X⊆ {0,1}& be the settings of random 
bits on which algorithm gives wrong 
answer

� Let Y ={0,1}&\X be the settings on which 
algorithm gives the correct answer



The Random Walk Generator: 
Expander Graphs
� Our PRG will use a random walk on a d-

regular G with vertex set {0,1}&, and degree 
d = constant.

� We  want G to be an expander in the 
following sense: If '( is G’s adjacency 
matrix and ) = +, > +. ≥ ⋯ ≥ +1 its 
eigenvalues then we require that

|34|
5 ≤ ,

,7

Such graphs exist with d=400 (next lectures)



The Random Walk Generator

� For the first run of algorithm, we require r truly 
random bits. Treat those bits as vertex of 
expander G.

� For each successive run, we choose a random 
neighbor of the present vertex and feed the 
corresponding bits to our algorithm.

� I.e, choose random i between 1 and 400 and 
move to the i-th neighbor of present vertex. 
Need log(400) ~ 9 random bits.

� Need concise description, don’t want to store the 
whole graph (e.g. see hypercube)



The Random Walk Generator

G !" ∈ {0,1})
t=0



The Random Walk Generator
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The Random Walk Generator
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The Random Walk Generator
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The Random Walk Generator

G



Formalizing the Problem

� Assume we will run the algorithm t+1 times. 
Start with truly random vertex u and take t 
random walk steps.

� Recall that X is the set of vertices on which 
the algorithm is not correct, we assume that 
|"| ≤ $%

&'' (algorithm correct 99% of time)
� If at the end, we report the majority of the 

t+1 runs of algorithm, then we will return 
the correct answer as along as the random 
walk is inside X less than half the time.



The Random Walk Generator

G
!" !#

!$

!%
!&

We will show that
Pr	[ + > -/2] ≤ ( $3)

&5#

T={0,…,t} time steps
S={i: !6 ∈ 8}



Formalizing the Problem

� Initial distribution is uniform (start with truly 
random string): !" = $/&

� Let '( and ') the characteristic vectors of X and 
Y.

� Let *( = +,-.(0) and *) = +,-.(2)
� Let 3 =

4

5
6 (not lazy) random walk matrix, with 

eigenvalues 74,…, 79 such that 7: ≤
4

4<
by the 

expansion requirement.

� For 0 ≤
=>

4<<
	 ,

S={i:@: ∈ 0}		(time	steps	that	the	walk	is	in	X)
				we	want to show Pr	[ S > U/2] ≤ (

=

X
)YZ4



Expander Graphs

� Generally, we defined expander graphs to 
be d-regular graphs whose adjacency 
matrix eigenvalues satisfy

|"#| ≤ %&
for i>1, and some small %. 



Quasi-Random Properties of 
Expander Graphs
� Expanders act like random graphs in 

many ways.
� We saw that with random walk on 

expander, we can boost the error 
probability like we could do with random 
walk on a random graph (or truly random 
stings, Chernoff bound)

� In fact, a random d-regular graph is 
expander w.h.p.



Quasi-Random Properties of 
Expander Graphs
� All sets of vertices in expander graph act like 

random sets of vertices.
� To see that, consider creating a random set 

S⊆ "	by including every vertex in S 
independently w.p. $.

� For every edge (u,v) the probability that 
each end point is in S is $. Probability that 
both end points are in S is $%.

� So, we expect $% fraction of the edges to go 
between vertices in S.

� We show that this is true for all sufficiently 
large sets in an expander.



Quasi-Random Properties of 
Expander Graphs: EML
� We show something stronger (expander 

mixing lemma), for two sets S and T.
� Include each vertex in S w.p. a and each 

vertex in T w.p. b. We allow vertices to 
belong to both S and T. We expect that 
for ab fraction of ordered pairs (u,v) we 
have u in S and v in T.



Expander Mixing Lemma

� For graph G=(V,E) define the ordered set 
of pairs 
!(#, %) = { ), * : ) ∈ #, * ∈ %, (), *) ∈ !}

� When S, T disjoint |! #, % | is the number 
of edges between S and T.

� |!(#, #)| counts every edge inside S 
twice.



Expander Mixing Lemma, 

simplified

� Theorem (Beigel, Margulis, Spielman’93, 

Alon, Chung ’88)

Let G=(V,E) a d-regular graph with |"#| ≤
(& − (

)*(),, for i>1. Then, for every S⊆V,	
T⊆V	with	|S|=an,	|T|=bn

||; <, = | − , < =
> | ≤ &, < = ⇒

||; <, = | − ,@A>| ≤ &,> @A


