Complexity
 Theory Lecture 12

Random Walks and Eigenvalues

Alexandra Kolla

Today

- Random walks on graphs review.
- Matrix form of random walks, lazy random walk.
- The stable distribution.
- Convergence and the second eigenvalue.
- Random walks on expanders.
- ST-UCONN in RL.

Random Walks on Graphs

- $G=(V, E, w)$ weighted undirected graph.
- Random walk on G starts on some vertex and moves to a neighbor with prob. proportional to the weight of the corresponding edge.
- We are interested in the probability distribution over vertices after a certain number of steps.

Random Walks on Graphs

- $\mathrm{G}=(\mathrm{V}, \mathrm{E}, \mathrm{w})$ weighted undirected graph.
- Let vector $p_{t} \in R^{n}$ denote the probability distribution at time t. We will also write $p_{t} \in R^{V}$, and $p_{t}(u)$ for the value at vertex u.
- Since it's a probability vector, $p_{t}(u) \geq 0$ and $\sum_{u} p_{t}(u)=1$ for every t .
- Usually, we start our walk at one vertex, so $p_{0}(u)=1$ for some vertex u and o for the rest.

Random Walks on Graphs

- To derive p_{t} from p_{t+1} note that the probability of being at node u at time $t+1$ is the sum over all neighbors v of u of the probability that the walk was on v at time t times the probability it moved from v to u in one step:

$$
p_{t+1}(u)=\sum_{v:(u, v) \in E} \frac{w(u, v)}{d(v)} p_{t}(v)
$$

Where $d(v)=\sum_{u} w(u, v)$ is the weighted degree of v.

Lazy Random Walks

- We will often consider lazy random walks, which are a variant where we stay put with probability $1 / 2$ at each time step, and walk to a random neighbor the other half of the time.

$$
p_{t+1}(u)=\frac{1}{2} p_{t}(u)+\frac{1}{2} \sum_{v:(u, v) \in E} \frac{w(u, v)}{d(v)} p_{t}(v)
$$

- Lazy random walks closely related to diffusion processes (at each time step, some substances diffuses out of each vertex)

Normalized Adjacency Matrix

- Need to define normalized version of Adjacency matrix.
- Normalized Adjacency matrix is what you would expect:

$$
M_{G}=D_{G}^{-1 / 2} A_{G} D_{G}^{-1 / 2}
$$

With eigenvalues $1=\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}$ and first eigenvector $\sqrt{ } \mathrm{d}$.

Normalized Adjacency Matrix

- We care about d-regular graphs.
- Normalized Adjacency matrix is what you would expect:

$$
M_{G}=\frac{1}{d} A_{G}
$$

With eigenvalues $1=\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}$ and first eigenvector 1.

Matrix Form of Random Walk

- Best way to understand random walks is with linear algebra. Equation

$$
p_{t+1}(u)=\frac{1}{2} p_{t}(u)+\frac{1}{2} \sum_{v:(u, v) \in E} \frac{w(u, v)}{d} p_{t}(v)
$$

Is equivalent to (verify)

$$
p_{t+1}=\frac{1}{2}\left(I+\frac{1}{d} A\right) p_{t}
$$

The lazy r.w. matrix is:

$$
W_{G}=\frac{1}{2}(I+M)=\frac{1}{2}\left(I+\frac{1}{d} A_{G}\right)
$$

Why Lazy Random Walks?

- $W_{G}=\frac{1}{2}(I+M)=\frac{1}{2}\left(I+\frac{1}{d} A_{G}\right)$
- All evals of W are between 1 and 0 : Perron evalue of M is 1 , so M has evalues between 1 and -1 .
- We let $1=\omega_{1} \geq \omega_{2} \geq \cdots \geq \omega_{n} \geq 0$
- Where $\omega_{i}=1 / 2\left(1+\mu_{i}\right)=1 / 2(1+$ $\left.\lambda_{i} / d\right)$

The Stable Distribution

$$
W_{G}=\frac{1}{2}(I+M)=\frac{1}{2}\left(I+\frac{1}{d} A_{G}\right)
$$

- Regardless of starting distribution, lazy r.w. always converges to stable distribution.
- In stable distribution, every vertex is visited with probability proportional to its (weighted) degree.

$$
\boldsymbol{\pi}(\mathrm{i})=\frac{\boldsymbol{d}(i)}{\sum_{j} \boldsymbol{d}(j)}=\frac{\mathbf{1}}{\mathbf{n}}
$$

The Stable Distribution

- π is right evector of W with evalue 1.
- Other reason to consider lazy walks, is that they always converge. (e.g. consider bipartite graphs)
- Distribution converges to $\boldsymbol{\pi}$. (Proof)

Rate of Convergeance

- Rate of convergence to the stable distribution is dictated by the second eigenvalue of W.
- Assume that r.w. starts at some vertex a. Let χ_{a} the characteristic vector of a, which is our starting distribution. For every vertex b, we will bound how far $p_{t}(\mathrm{~b})$ can be from $\boldsymbol{\pi}(\mathrm{b})$.

Rate of Convergeance

- Assume that r.w. starts at some vertex a.

Let χ_{a} the characteristic vector of a, which is our starting distribution. For every vertex b, we will bound how far $p_{t}(\mathrm{~b})$ can be from $\pi(\mathrm{b}):$

- Theorem. For all a, b, if $p_{0}=\chi_{a}$ then

$$
\left|p_{t}(\mathrm{~b})-\boldsymbol{\pi}(\mathrm{b})\right| \leq \omega_{2}^{t}
$$

How Many Steps to Converge?

- To have $\left|p_{t}(\mathrm{~b})-\boldsymbol{\pi}(\mathrm{b})\right| \leq \varepsilon$, we need t to be such that $\omega_{2}{ }^{t} \leq \varepsilon$.
- Define $\omega_{2}=1-\gamma$, where γ is the spectral gap between first and second eigenvalue(remember discussion about expansion and large spectral gap).
- Number of steps to convergeance depends on $1 / \gamma$, use $1-\gamma \leq e^{-\gamma}$.

Mixing time for graphs

- Let's go back to thinking of non-lazy r.w. on d-regular, connected, non-bipartite graphs.
- It follows that $\left|p_{t}(\mathrm{~b})-\boldsymbol{\pi}(\mathrm{b})\right| \leq \frac{1}{2 n}$ when $t \approx 0\left(\frac{\log \mathrm{n}}{\gamma}\right)=0\left(\frac{\log \mathrm{n}}{1-\frac{\lambda_{2}}{d}}\right)$ (mixing time)
- For expanders, $\gamma=\Omega(1)$. Set $\lambda=\frac{\lambda_{2}}{d}$.

Mixing time for graphs

- For any graph, we show $1-\lambda=\gamma \geq \frac{1}{d n^{2}}$
- Use fact $\left(\sum_{i}\left|v_{i}\right|\right)^{2} \leq n \sum_{i} v_{i}^{2}$
- Therefore, mixing time is $\mathrm{O}\left(d n^{2} \log n\right)$.

ST-UCONN and symmetric nondeterministic machines

- Undirected s, t, connectivity ST-UCONN: we are given undirected graph and the question is if there is path from s to t.
- Not known to be complete for NL, probably not, but complete for class SL (symmetric, non-deterministic TM with O(log n) space).

From previous lectures

- $\mathrm{L} \subseteq \mathrm{SL} \subseteq \mathrm{RL} \subseteq \mathrm{NL}$.
- Reingold ' O 4 showed in a breakthrough result that $\mathrm{L}=\mathrm{SL}$.
- We will see that ST-UCONN in RL in this lecture. (Aleliunas, Karp, Lipton, Lov'asz, Rackoff)
- Later on we will see Reingold's theorem.

