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Today

� Random walks on graphs review.
� Matrix form of random walks, lazy 

random walk.
� The stable distribution.
� Convergence and the second eigenvalue.
� Random walks on expanders.
� ST-UCONN in RL.



Random Walks on Graphs

� G=(V,E,w) weighted undirected graph.
� Random walk on G starts on some vertex 

and moves to a neighbor with prob. 
proportional to the weight of the 
corresponding edge.

� We are interested in the probability 
distribution over vertices after a certain 
number of steps.



Random Walks on Graphs
� G=(V,E,w) weighted undirected graph.
� Let vector  !" ∈ $% denote the 

probability distribution at time t. We will 
also write !" ∈ $&, and  !" ' for the 
value at vertex '.

� Since it’s a probability vector, !" ' ≥ 0
and ∑ !" ', = 1 for every t.

� Usually, we start our walk at one vertex, 
so  !/ ' = 1	for some vertex ' and 0 for 
the rest.



Random Walks on Graphs
� To derive !" from !"#$	note that the 

probability of being at node u at time t+1 is 
the sum over all neighbors v of u of the 
probability that the walk was on v at time t 
times the probability it moved from v to u in 
one step: 

!"#$ & = ∑ )(+,-)
/(-) !" 0-:(+,-)∈3

Where 4(0)=∑ 5(&, 0)+ is the weighted 
degree of v.



Lazy Random Walks
� We will often consider lazy random walks, 

which are a variant where we stay put with 
probability ½ at each time step, and walk to 
a random neighbor the other half of the 
time. 

� Lazy random walks closely related to 
diffusion processes (at each time step, some 
substances diffuses out of each vertex)

!"#$ % = 1
2!" % + 12 * +(%, .)

0(.) !" .
1:(3,1)∈5



Normalized Adjacency Matrix

� Need to define normalized version of 
Adjacency matrix.

� Normalized Adjacency matrix is what you 
would expect: 

!" = $"%&/()"$"%&/(
With eigenvalues 1 = +& ≥ +( ≥ ⋯ ≥ +.
and first eigenvector √d.



Normalized Adjacency Matrix

� We care about d-regular graphs.
� Normalized Adjacency matrix is what you 

would expect: 

!" = $
% &"

With eigenvalues 1 = ($ ≥ (* ≥ ⋯ ≥ (,
and first eigenvector 1.



Matrix Form of Random Walk

� Best way to understand random walks is 
with linear algebra. Equation

!"#$ % = $
' !" % + $

'∑
*(,,.)
0 !" 1.:(,,.)∈4

Is equivalent to (verify)

!"#$ = $
' (5 +

$
0 6) !"

The lazy r.w. matrix is:

78 =
1
2 5 + ; = 1

2 (5 +
1
< 68)



Why Lazy Random Walks?

�!" = $
% & + ( = $

% (& +
$
* +")

� All evals of W are between 1 and 0: 
Perron evalue of M is 1, so M has evalues
between 1 and -1.

� We let 1 = .$ ≥ .% ≥ ⋯ ≥ .1 ≥ 0

� Where .3 = 1/2(1 + 63) = 1/2(1 +
73/8)



The Stable Distribution
!" =

1
2 & + ( = 1

2 (& +
1
* +")

� Regardless of starting distribution, lazy 
r.w. always converges to stable 
distribution.

� In stable distribution, every vertex is 
visited with probability proportional to its 
(weighted) degree.

- i = /(0)
∑ /(2)3

= 4
5



The Stable Distribution

� ! is right evector of W with evalue 1.

� Other reason to consider lazy walks, is 
that they always converge. (e.g. consider 
bipartite graphs)

� Distribution converges to !. (Proof)



Rate of Convergeance
� Rate of convergence to the stable 

distribution is dictated by the second 
eigenvalue of W. 

� Assume that r.w. starts at some vertex a. 
Let χ"the characteristic vector of a, 
which is our starting distribution. For 
every vertex b, we will bound how far 
#$ b can be from & b .



Rate of Convergeance
� Assume that r.w. starts at some vertex a. 

Let χ"the characteristic vector of a, 
which is our starting distribution. For 
every vertex b, we will bound how far 
#$ b can be from & b :

� Theorem. For all a,b, if #( = χ" then
|#$ b − & b | ≤ -.$



How Many Steps to Converge?

� To have |"# b − & b | ≤ ( , we need t 
to be such that  )*# ≤ ( .

� Define )* = 1 − -, where - is the 
spectral gap between first and second 
eigenvalue(remember discussion about 
expansion and large spectral gap).

� Number of steps to convergeance
depends on 1/ - , use 1 − - ≤ ./0.



Mixing time for graphs

� Let’s go back to thinking of non-lazy r.w.
on d-regular, connected, non-bipartite 
graphs.

� It follows that |"# b − & b | ≤ (
)* when 

+ ≈ O ./0	2
3 = O ./0	2

(4567
(mixing time)

� For expanders, 8 = Ω(1). Set > = ?6
@ .



Mixing time for graphs

� For any graph, we show 1 − # = % ≥ '
()*

� Use fact (∑ -.. )0≤ 2	∑ -.0. 		

� Therefore, mixing time is O(520 log 2).



ST-UCONN and symmetric non-
deterministic machines
� Undirected s,t, connectivity ST-UCONN: 

we are given undirected graph and the 
question is if there is path from s to t.

� Not known to be complete for NL, 
probably not, but complete for class SL 
(symmetric, non-deterministic TM with 
O(log n) space).



From previous lectures

� L ⊆SL ⊆	RL	⊆	NL.
� Reingold ‘04 showed in a breakthrough 

result that L=SL.
� We will see that ST-UCONN in RL in this 

lecture. (Aleliunas, Karp, Lipton, Lov´asz, 
Rackoff)

� Later on we will see Reingold’s theorem.


