
Computational
Complexity. Lecture 1

P vs. NP, Deterministic
Hierarchy Theorem

Alexandra Kolla

Today

� Define NP, state P vs. NP problem
� Search problems/decision problems
� Diagonalization
� Time hierarchy theorem (only known

theorem which allows to show that
certain problems are not in P)

� http://www.win.tue.nl/~gwoegi/P-versus-
NP.htm

Computational problems

� In a computational problem:
◦ We are given an input encoded over the

alphabet {0,1}.
◦ We want to return as output a solution

satisfying some property.
◦ Computational problem is then defined by

the property that the output has to satisfy
given the input.

� 4 natural types of problems: decision,
search, optimization, counting.

Decision problems

� In a decision problem:
◦ We are given an input ! ∈ {0,1}∗
◦ We are required to return a YES/NO answer

(verify whether input satisfies property)

� E.g is an undirected graph 3 colorable?
� Specify decision problems with set of

inputs L ⊆ {0,1}∗ for which the answer is
YES (language)

Search problems

� In a search problem:
◦ We are given an input ! ∈ {0,1}∗
◦ We are required to compute some answer y ∈
{0,1}∗ that is in some relation to x, if such y exists

� Search problems specified with relations R⊆
0,1 ∗× 0,1 ∗, where (x,y) ∈R iff y is an

admissible answer given x

� For graph 3 coloring, we would want the
coloring as output if it exists (more
demanding). Formally relation R3COL

contains pairs (G,c) ∈where G is 3-colorable
and c is a valid 3-coloring

P and NP

� We study asymptotic complexity of
problems

� Is there “feasible” algorithm for 3
coloring?

� “feasible algorithm” = runs in poly time
� P is class of decision problems solvable in

poly time
� Easier to verify than come up with

solution…

P and NP

� P is class of decision problems solvable in
poly time.

� Search problem defined by a relation R is an
NP search problem if there is a poly time
algorithm that given x and y decides
whether (x,y) ∈ R, and if there is a
polynomial p s.t. if (x,y) ∈ R, then |y|≤p(|x|).

� Captures the fact that relation is efficiently
computable and solutions (if they exist) are
short.

P and NP

� Decision problem L is in NP if
◦ (Definition 1) there is some NP relation R

such that x∈ L iff there is y s.t. (x,y) ∈ R
◦ (Definition 2) there is a poly time algorithm

V(.,.) and a polynomial p s.t. x∈ L iff there is a
y, |y|≤p(x) s.t. V(x,y) accepts.

� NP= class of NP decision problems.

P and NP

� Theorem 1. NP is the set of decision
problems that are solvable in poly time
by a non-deterministic Turing machine.

P and NP
� NP as a complexity class is defined as class of

decision problems: easier to develop cleaner
theory, complexity of decision problems
completely characterizes complexity of search
problems.

� Theorem 2. For every NP search problem there is
an NP decision problem such that if the decision
problem is solvable in time t(n) then the search
problem is solvable in time O(!" # ⋅ %(!" #)). In
particular, P=NP iff every NP search problem is
solvable in poly time.

P and NP

� For function t: N → #, we define
◦ DTIME(t(n)) the set of decision problems that

are solvable by a deterministic Turing
machine within time t(n) on inputs of length n
◦ NTIME(t(n)) the set of decision problems that

are solvable by a non-deterministic Turing
machine within time t(n) on inputs of length n

� P= ⋃ & '()*+(- .&)
� NP= ⋃ & #()*+(- .&)

Diagonalization

� Only known way of proving separations
between complexity classes

� Similar to Cantor
� Halting Problem is undecidable

Diagonalization
� Definition. (Time constructible functions) A

function t:ℕ→ℕ	is time constructible if there
is algorithm that, on input n, computes the
value t(n) in time O(t(n))

� Eg. All polynomials, all combinations of
exponential, polynomial and root functions
are time constructible

� Not time constructible: t(n) =$% if the
number n written in binary encodes a turing
machine that halts on all inputs and
t(n)=$%+1 otherwise

Time hierarchy theorem

� Theorem (simple version). For every
time-constructible function t(.), there is a
language L such that every algorithm
that decides L must run in time >t(n) on
infinitely many inputs, but
L∈DTIME("# $ (&)).

Time hierarchy theorem

� Theorem (alternative formulation). For
every f time-constructible function with
f(n)logf(n)=o(g(n))

DTIME(!(#)) ⊊DTIME(g(#))

E and EXP

� E=DTIME(2" #)

� EXP=⋃kDTIME(2" #&)

Corollary. P≠E	and	E	≠EXP

Ladner’s theorem and NP-
intermediate problems

� Theorem. If P≠NP	then there exists a
language L∈NP\P that is not NP-
complete.

