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Today

� Define NP, state P vs. NP problem
� Search problems/decision problems
� Diagonalization
� Time hierarchy theorem (only known 

theorem which allows to show that 
certain problems are not in P)



� http://www.win.tue.nl/~gwoegi/P-versus-
NP.htm



Computational problems

� In a computational problem:
◦ We are given an input encoded over the 

alphabet {0,1}.
◦ We want to return as output a solution 

satisfying some property.
◦ Computational problem is then defined by 

the property that the output has to satisfy 
given the input.

� 4 natural types of problems: decision, 
search, optimization, counting.



Decision problems

� In a decision problem:
◦ We are given an input ! ∈ {0,1}∗
◦ We are required to return a YES/NO answer 

(verify whether input satisfies property)

� E.g is an undirected graph 3 colorable?
� Specify decision problems with set of 

inputs L ⊆ {0,1}∗ for which the answer is 
YES (language)



Search problems

� In a search problem:
◦ We are given an input ! ∈ {0,1}∗
◦ We are required to compute some answer y ∈
{0,1}∗ that is in some relation to x, if such y exists 

� Search problems specified with relations R⊆
0,1 ∗× 0,1 ∗, where (x,y) ∈R iff y is an    

admissible answer given x

� For graph 3 coloring, we would want the 
coloring as output if it exists (more 
demanding). Formally relation R3COL

contains pairs (G,c) ∈where G is 3-colorable 
and c is a valid 3-coloring



P and NP

� We study asymptotic complexity of 
problems

� Is there “feasible” algorithm for 3 
coloring?

� “feasible algorithm” = runs in poly time
� P is class of decision problems solvable in 

poly time
� Easier to verify than come up with 

solution…



P and NP

� P is class of decision problems solvable in 
poly time.

� Search problem defined by a relation R is an 
NP search problem if there is a poly time 
algorithm that given x and y decides 
whether (x,y) ∈ R, and if there is a 
polynomial p s.t. if (x,y) ∈ R, then |y|≤p(|x|).

� Captures the fact that  relation is efficiently 
computable and solutions (if they exist) are 
short.



P and NP

� Decision problem L is in NP if
◦ (Definition 1) there is some NP relation R 

such that x∈ L iff there is y s.t. (x,y) ∈ R
◦ (Definition 2) there is a poly time algorithm 

V(.,.) and a polynomial p s.t. x∈ L iff there is a 
y, |y|≤p(x) s.t. V(x,y) accepts.

� NP= class of NP decision problems.



P and NP

� Theorem 1. NP is the set of decision 
problems that are solvable in poly time 
by a non-deterministic Turing machine.



P and NP
� NP as a complexity class is defined as class of 

decision problems: easier to develop cleaner 
theory, complexity of decision problems 
completely characterizes complexity of search 
problems.

� Theorem 2. For every NP search problem there is 
an NP decision problem such that if the decision 
problem is solvable in time t(n) then the search 
problem is solvable in time O(!" # ⋅ %(!" # )). In 
particular, P=NP iff every NP search problem is 
solvable in poly time.



P and NP

� For function t: N → #, we define
◦ DTIME(t(n)) the set of decision problems that 

are solvable by a deterministic Turing 
machine within time t(n) on inputs of length n
◦ NTIME(t(n)) the set of decision problems that 

are solvable by a non-deterministic Turing 
machine within time t(n) on inputs of length n

� P= ⋃ & '()*+(- .& )
� NP= ⋃ & #()*+(- .& )



Diagonalization

� Only known way of proving separations 
between complexity classes

� Similar to Cantor
� Halting Problem is undecidable



Diagonalization
� Definition. (Time constructible functions) A 

function t:ℕ→ℕ	is time constructible if there 
is algorithm that, on input n, computes the 
value t(n) in time O(t(n))

� Eg. All polynomials, all combinations of 
exponential, polynomial and root functions 
are time constructible

� Not time constructible: t(n) =$% if the 
number n written in binary encodes a turing
machine that halts on all inputs and 
t(n)=$%+1 otherwise 



Time hierarchy theorem

� Theorem (simple version). For every 
time-constructible function t(.), there is a 
language L such that every algorithm 
that decides L must run in time >t(n) on 
infinitely many inputs, but 
L∈DTIME("# $ (&)).



Time hierarchy theorem 

� Theorem (alternative formulation). For 
every f time-constructible function with 
f(n)logf(n)=o(g(n))

DTIME(!(#)) ⊊DTIME(g(#))



E and EXP

� E=DTIME(2" # )

� EXP=⋃kDTIME(2" #& )

Corollary. P≠E	and	E	≠EXP



Ladner’s theorem and NP-
intermediate problems

� Theorem. If P≠NP	then there exists a 
language L∈NP\P that is not NP-
complete.


