Problem 1 (25 pts)

Recall that the trace of a matrix A, denoted $\text{tr}(A)$, is the sum of the entries along the diagonal.

1. Prove that if $A \in \mathbb{R}^{n \times n}$ has eigenvalues $\lambda_1, \ldots, \lambda_n$, then $\text{tr}(A) = \sum_{i=1}^{n} \lambda_i$.

2. Prove that if A is a random walk matrix of an n-vertex graph G and $k \geq 1$, then $\text{tr}(A^k)$ is equal to n times the probability that if we select a vertex $v \in V(G)$ uniformly at random and take a k step random walk from vertex v, then we end up back at vertex v.

3. Prove that for every d-regular graph $G, k \in \mathbb{N}$ and vertex $v \in V(G)$ of G, the probability that a path of length k starting from v ends up back at v is at least as large as the corresponding probability in T_d, where T_d is the complete $(d-1)$-ary tree of depth k rooted at v (that is, every internal vertex has degree d, one parent and $d-1$ children).
Problem 2 (25 pts)

1. Prove that if M is the transition matrix of a regular undirected graph G and $\lambda_1 \geq \cdots \geq \lambda_n$ are its eigenvalues with multiplicities, then the number of eigenvalues equal to 1 is the same as the number of connected components of G. Hint: If λ is an eigenvalue of M, then the set of vectors x such that $Mx = \lambda x$ forms a linear space. For the solution of this problem you can assume the following result: the multiplicity of λ is the same as the dimension of linear space $\{x : Mx = \lambda x\}$.

2. Let G be an undirected regular graph, M be its transition matrix, $\lambda_1 \geq \cdots \geq \cdots \geq \lambda_n$ be the eigenvalues of M. Prove that $\lambda_n = -1$ if and only if G is bipartite.

3. Let G be an undirected regular graph, M be its transition matrix, $\lambda_1 \geq \cdots \geq \cdots \geq \lambda_n$ be the eigenvalues of M. Prove that

$$\max_i |\lambda_i| = \max_{x \in \mathbb{R}^n} \frac{||Mx||}{||x||}$$

Problem 3 (25 pts)

Let BIPARTITE denote the language of all (undirected) graphs which are bipartite. Show that BIPARTITE is in NL.