Problem 1 (25 pts.)

Consider the following decision problem, that we call U: we are given in input (M, x, t, l) where M is a Turing machine, $x \in \{0, 1\}^*$ is a possible input, and t and l are integers encoded in unary, and the problem is to determine whether there is a $y \in \{0, 1\}^*, \|y\| \leq l$, such that $M(x, y)$ accepts in at most t steps. Show that U is NP-complete.

Problem 2 (25 pts.)

Define a language L which belongs to SIZE$(O(1))$ and is undecidable.
Problem 3 (25 pts.)

Recall that NEXP is defined by

\[NEXP = \bigcup_{c} NTIME(2^{n^c}), c \geq 1 \]

Give a definition of NEXP that does not involve non-deterministic Turing machines, analogous to the verifier definition of NP seen in class, and prove that your definition is equivalent to the above definition using non-deterministic Turing machines.

Problem 4 (25 pts.)

Prove that if \(P = NP \), then \(EXP = NEXP \).